Publications by authors named "Elda Markovic"

2 Publications

  • Page 1 of 1

Advanced Silicon Chemistry in Australia: Forming Strong Links with Asia.

Chem Asian J 2017 Jun 31;12(11):1123-1152. Epub 2017 May 31.

Associate (Research & Development: Polymer Chemistry), COOE Pty Ltd., 46/40 W Thebarton Rd, Thebarton, South Australia, 5031, Australia.

This paper details Australian commercial and academic silicon research. Areas of interest include silicon metal, polysiloxane polymers, copolymers, cyclics, emulsions, microemulsions, silanes, silane coupling agents, sol-gel chemistry and water-treatments, porous silicon, polysiloxane degradation, silicon hydrogel contact lenses, silanolate synthesis, siloxane interfacial polymerisation, hydrosilylation, polysiloxane electrolytes for lithium ion batteries, silanes for PBX materials, octafunctionalized polyhedral oligomeric silsesquioxanes (POSS), POSS hybrids, sol-gel hydrogenation catalysts, silane modification of silica, sol-gel energy storage, silicate grout stabilisation, GeoPolymer concretes, aerogel insulating foams, "Phaco-Ersatz" Accommodating Gel-Intraocular Lens technologies. Strong collaborative opportunities, in silicon, with Asia, exist with organisations such as: 1) The Asian Silicon Society and 2) The Agency for the Assessment and Application of Technology (BPPT) Indonesia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.201700598DOI Listing
June 2017

Development of an in vitro reproductive screening assay for novel pharmaceutical compounds.

Biotechnol Appl Biochem 2008 Oct;51(Pt 2):63-71

Department of Medical Biotechnology, School of Medicine, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.

An in vitro reproductive cell-based toxicity assay was developed using MLTC-1 (murine Leydig tumour cell line) in order to examine the reproductive toxicity of two novel nanopharmaceutical compounds, namely ethylene glycol mono allyl ether and poly(ethylene glycol) octa-functionalized polyhedral oligomeric silsesquioxane. Three commonly used cytotoxicity assays, namely the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide], MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] and Crystal Violet assays, were compared, and the MTT assay proved to be the most accurate and reproducible for the MLTC-1 cell line. The doubling rate of the MLTC-1 cells was 30+/-3.5 h and the optimal seeding density for the MTT assay was 20000 cells per well, and the optimized MTT assay utilized a 4 h cell adherence followed by incubation with 0.5 mg/ml MTT for 1 h. The intra- and inter-assay CV (coefficient of variation) values were 12.3 and 11% respectively. MLTC-1 cells only produce the reproductive hormone progesterone in response to hCG (human chorionic gonadotropin), which stimulated progesterone production dose-dependently from 0 to 100 m.i.u. (milliinternational units)/ml (2706+/-1118 ng/ml). H(2)O(2) as a negative control killed 100% of cells at 1000 microg/ml. The two nanopharmaceutical compounds were cytotoxic at concentrations > or =0.1 microg/ml, but hCG decreased cytotoxicity to > or =1000 microg/ml (P<0.001). hCG-stimulated progesterone synthesis afforded some protection against the cytotoxic effects of the two novel nanotechnology compounds; therefore doses < or =100 microg/ml and an exposure period of 1 h would be recommended for testing in in vivo animal reproductive assays.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1042/BA20070223DOI Listing
October 2008