Publications by authors named "Einav Mayzlish-Gati"

18 Publications

  • Page 1 of 1

Cannabis-Derived Compounds Cannabichromene and Δ9-Tetrahydrocannabinol Interact and Exhibit Cytotoxic Activity against Urothelial Cell Carcinoma Correlated with Inhibition of Cell Migration and Cytoskeleton Organization.

Molecules 2021 Jan 17;26(2). Epub 2021 Jan 17.

Institute of Plant Science, Agriculture Research Organization, Volcani Center, 7505101 Rishon LeZion, Israel.

contains more than 500 constituents, yet the anticancer properties of the vast majority of cannabis compounds remains unknown. We aimed to identify cannabis compounds and their combinations presenting cytotoxicity against bladder urothelial carcinoma (UC), the most common urinary system cancer. An XTT assay was used to determine cytotoxic activity of extracts on T24 and HBT-9 cell lines. Extract chemical content was identified by high-performance liquid chromatography (HPLC). Fluorescence-activated cell sorting (FACS) was used to determine apoptosis and cell cycle, using stained F-actin and nuclei. Scratch and transwell assays were used to determine cell migration and invasion, respectively. Gene expression was determined by quantitative Polymerase chain reaction (PCR). The most active decarboxylated extract fraction (F7) of high-cannabidiol (CBD) was found to contain cannabichromene (CBC) and Δ9-tetrahydrocannabinol (THC). Synergistic interaction was demonstrated between CBC + THC whereas cannabinoid receptor (CB) type 1 and type 2 inverse agonists reduced cytotoxic activity. Treatments with CBC + THC or CBD led to cell cycle arrest and cell apoptosis. CBC + THC or CBD treatments inhibited cell migration and affected F-actin integrity. Identification of active plant ingredients (API) from cannabis that induce apoptosis and affect cell migration in UC cell lines forms a basis for pre-clinical trials for UC treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules26020465DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830447PMC
January 2021

Terpenoids and Phytocannabinoids Co-Produced in Strains Show Specific Interaction for Cell Cytotoxic Activity.

Molecules 2019 Aug 21;24(17). Epub 2019 Aug 21.

Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 7505101, Israel.

Mixtures of different phytocannabinoids are more active biologically than single phytocannabinoids. However, cannabis terpenoids as potential instigators of phytocannabinoid activity have not yet been explored in detail. Terpenoid groups were statistically co-related to certain cannabis strains rich in Δ-tetrahydrocannabinolic acid (THCA) or cannabidiolic acid (CBDA), and their ability to enhance the activity of decarboxylase phytocannabinoids (i.e., THC or CBD) was determined. Analytical HPLC and GC/MS were used to identify and quantify the secondary metabolites in 17 strains of , and correlations between cannabinoids and terpenoids in each strain were determined. Column separation was used to separate and collect the compounds, and cell viability assay was used to assess biological activity. We found that in "high THC" or "high CBD" strains, phytocannabinoids are produced alongside certain sets of terpenoids. Only co-related terpenoids enhanced the cytotoxic activity of phytocannabinoids on MDA-MB-231 and HCT-116 cell lines. This was found to be most effective in natural ratios found in extracts of cannabis inflorescence. The correlation in a particular strain between THCA or CBDA and a certain set of terpenoids, and the partial specificity in interaction may have influenced the cultivation of cannabis and may have implications for therapeutic treatments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules24173031DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749504PMC
August 2019

The Israeli-Palestinian wheat landraces collection: restoration and characterization of lost genetic diversity.

J Sci Food Agric 2020 Aug 18;100(11):4083-4092. Epub 2019 Jul 18.

Department of Vegetables and Field Crop, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel.

Background: For over a century, genetic diversity of wheat worldwide was eroded by continual selection for high yields and industrial demands. Wheat landraces cultivated in Israel and Palestine demonstrate high genetic diversity and a potentially wide repertoire of adaptive alleles. While most Israeli-Palestinian wheat landraces were lost in the transition to 'Green Revolution' semi-dwarf varieties, some germplasm collections made at the beginning of the 20th century survived in gene banks and private collections worldwide. However, fragmentation and poor conservation place this unique genetic resource at a high risk of genetic erosion. Herein, we describe a long-term initiative to restore, conserve, and characterize a collection of Israeli and Palestinian wheat landraces (IPLR).

Results: We report on (i) the IPLR construction (n = 932), (ii) the historical and agronomic context to this collection, (iii) the characterization and assessment of the IPLR's genetic diversity, and (iv) a data comparison from two distinct subcollections within IPLR: a collection made by N. Vavilov in 1926 (IPLR-VIR) and a later one (1979-1981) made by Y. Mattatia (IPLR-M). Though conducted in the same eco-geographic space, these two collections were subjected to considerably different conservation pathways. IPLR-M, which underwent only one propagation cycle, demonstrated marked genetic and phenotypic variability (within and between accessions) in comparison with IPLR-VIR, which had been regularly regenerated over ∼90 years.

Conclusion: We postulate that long-term ex situ conservation involving human and genotype × environment selection may significantly reduce accession heterogeneity and allelic diversity. Results are further discussed in a broader context of pre-breeding and conservation. © 2019 Society of Chemical Industry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.9822DOI Listing
August 2020

Germination, physiological and biochemical responses of acacia seedlings (Acacia raddiana and Acacia tortilis) to petroleum contaminated soils.

Environ Pollut 2018 Mar 21;234:642-655. Epub 2017 Dec 21.

The Dead Sea Arava Science Center, Tamar Regional Council, Neve Zohar 86910, Israel. Electronic address:

Along the arid Arava, southern Israel, acacia trees (Acacia raddiana and Acacia tortilis) are considered keystone species. Yet they are threatened by the ongoing aquifer depletion for agriculture, the conversion of natural land to agricultural land, seed infestation by bruchid beetles, and the reduction in precipitation level in the region. In the acacia dominated Evrona reserve (southern Arava), adding to these threats are recurrent oil spills from an underground pipeline. We report here a study of the effects of contaminated soils, from a recent (December 2014) and a much older (1975) oil spills. The effects of local petroleum oil-contaminated soils on germination and early growing stages of the two acacia species were studied by comparisons with uncontaminated (control) soils from the same sites. For both acacia species, germination was significantly reduced in the 2014 oil-contaminated soils, whereas delayed in the 1975 oil-contaminated soil. There was no significant effect of oil volatile compounds on seed germination. At 105 days post transplanting (DPT), height, leaf number, stem diameter, and root growth were significantly smaller in the oil-contaminated soils. While photosynthetic performance (quantum yield of photosystem II) did not differ considerably between treatments, reductions of chlorophylls content and protein content were found in seedlings growing in the contaminated soils. Significant increases in superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities were found in roots of seedlings growing in oil-contaminated soils. These results demonstrate that seed germination and seedling growth of both acacia species were strongly restricted by oil contamination in soils, from both recent (2014) and a 40-year old (1975) oil spills. Such long-term effects of oil spills on local acacia seedlings could shift the structure of local acacia communities. These results should be taken into account by local authorities aiming to clean up and restore such polluted areas.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2017.11.067DOI Listing
March 2018

Review on Anti-Cancer Activity in Wild Plants of the Middle East.

Curr Med Chem 2018 ;25(36):4656-4670

Institute of Plant Sciences, Agriculture Research Organization, Volcani Center, Rishon LeZion, Israel.

Background: The Mediterranean basin is one of the richest biodiversity areas in the world, and the use of medicinal plants for treating cancer in this area has been documented for generations in different cultures.

Objective: To present and discuss the findings related to medicinal plants with confirmed data on active compounds and/or clear mode of action.

Methods: We undertook a structured search of bibliography of peer-reviewed research literature using key words and a focused review question. Papers with sufficient quality were reviewed, their findings presented and integrated into a coherent, state of the art document on wild plants of the Middle East with anti-cancer activity.

Results: 121 papers were included in the review, among them 10 define herbal medicine, 3 describe the status of cancer worldwide, 18 discuss biodiversity, chemodiversity, ethnopharmacological survey and conservation of medicinal plants, 12 describe well known natural products from plants used to treat cancer and 78 papers describe specific compounds and mode of action in different wild plants from the middle east, traditionally used to treat cancer.

Conclusions: Confirmed data on active compounds and/or clear mode of action exist for several wild plants traditionally used in herbal medicine to treat cancer. Yet, medicinal plants were mainly gathered from the wild, resulting in some of the commonly used herbs becoming endangered species. Also, in many cases, the activity and biochemical profile of plants harvested over different time spans and ecosystems may vary. Rational cultivation may ensure optimized yield with a uniform high quality of products.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929867324666170705113129DOI Listing
January 2019

Expression of MAX2 under SCARECROW promoter enhances the strigolactone/MAX2 dependent response of Arabidopsis roots to low-phosphate conditions.

Planta 2016 Jun 26;243(6):1419-27. Epub 2016 Feb 26.

Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel.

Main Conclusion: MAX2/strigolactone signaling in the endodermis and/or quiescent center of the root is partially sufficient to exert changes in F-actin density and cellular trafficking in the root epidermis, and alter gene expression during plant response to low Pi conditions. Strigolactones (SLs) are a new group of plant hormones that regulate different developmental processes in the plant via MAX2, an F-box protein that interacts with their receptor. SLs and MAX2 are necessary for the marked increase in root-hair (RH) density in seedlings under conditions of phosphate (Pi) deprivation. This marked elevation was associated with an active reduction in actin-filament density and endosomal movement in root epidermal cells. Also, expression of MAX2 under the SCARECROW (SCR) promoter was sufficient to confer SL sensitivity in roots, suggesting that SL signaling pathways act through a root-specific, yet non-cell-autonomous regulatory mode of action. Here we show evidence for a non-cell autonomous signaling of SL/MAX2, originating from the root endodermis, and necessary for seedling response to conditions of Pi deprivation. SCR-derived expression of MAX2 in max2-1 mutant background promoted the root low Pi response, whereas supplementation of the synthetic SL GR24 to these SCR:MAX2 expressing lines further enhanced this response. Moreover, the SCR:MAX2 expression led to changes in actin density and endosome movement in epidermal cells and in TIR1 and PHO2 gene expression. These results demonstrate that MAX2 signaling in the endodermis and/or quiescent center is partially sufficient to exert changes in F-actin density and cellular trafficking in the epidermis, and alter gene expression under low Pi conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-016-2477-7DOI Listing
June 2016

Stereochemical Assignment of Strigolactone Analogues Confirms Their Selective Biological Activity.

J Nat Prod 2015 Nov 27;78(11):2624-33. Epub 2015 Oct 27.

Department of Chemistry, University of Turin , Via P. Giuria 7, 10125 Turin, Italy.

Strigolactones (SLs) are new plant hormones with various developmental functions. They are also soil signaling chemicals that are required for establishing beneficial mycorrhizal plant/fungus symbiosis. In addition, SLs play an essential role in inducing seed germination in root-parasitic weeds, which are one of the seven most serious biological threats to food security. There are around 20 natural SLs that are produced by plants in very low quantities. Therefore, most of the knowledge on SL signal transduction and associated molecular events is based on the application of synthetic analogues. Stereochemistry plays a crucial role in the structure-activity relationship of SLs, as compounds with an unnatural D-ring configuration may induce biological effects that are unrelated to SLs. We have synthesized a series of strigolactone analogues, whose absolute configuration has been elucidated and related with their biological activity, thus confirming the high specificity of the response. Analogues bearing the R-configured butenolide moiety showed enhanced biological activity, which highlights the importance of this stereochemical motif.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jnatprod.5b00557DOI Listing
November 2015

Strigolactone analogs act as new anti-cancer agents in inhibition of breast cancer in xenograft model.

Cancer Biol Ther 2015 20;16(11):1682-8. Epub 2015 Jul 20.

a Institute of Plant Sciences; ARO; Volcani Center ; Bet Dagan , Israel.

Strigolactones (SLs) are a novel class of plant hormones. Previously, we found that analogs of SLs induce growth arrest and apoptosis in breast cancer cell lines. These compounds also inhibited the growth of breast cancer stem cell enriched-mammospheres with increased potency. Furthermore, strigolactone analogs inhibited growth and survival of colon, lung, prostate, melanoma, osteosarcoma and leukemia cancer cell lines. To further examine the anti-cancer activity of SLs in vivo, we have examined their effects on growth and viability of MDA-MB-231 tumor xenografts model either alone or in combination with paclitaxel. We show that strigolactone act as new anti-cancer agents in inhibition of breast cancer in xenograft model. In addition we show that SLs affect the integrity of the microtubule network and therefore may inhibit the migratory phenotype of the highly invasive breast cancer cell lines that were examined.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/15384047.2015.1070982DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846121PMC
September 2016

Arabidopsis response to low-phosphate conditions includes active changes in actin filaments and PIN2 polarization and is dependent on strigolactone signalling.

J Exp Bot 2015 Mar 21;66(5):1499-510. Epub 2015 Jan 21.

Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan 50250, Israel

Strigolactones (SLs) are plant hormones that regulate the plant response to phosphate (Pi) growth conditions. At least part of SL-signalling execution in roots involves MAX2-dependent effects on PIN2 polar localization in the plasma membrane (PM) and actin bundling and dynamics. We examined PIN2 expression, PIN2 PM localization, endosome trafficking, and actin bundling under low-Pi conditions: a MAX2-dependent reduction in PIN2 trafficking and polarization in the PM, reduced endosome trafficking, and increased actin-filament bundling were detected in root cells. The intracellular protein trafficking that is related to PIN proteins but unassociated with AUX1 PM localization was selectively inhibited. Exogenous supplementation of the synthetic SL GR24 to a SL-deficient mutant (max4) led to depletion of PIN2 from the PM under low-Pi conditions. Accordingly, roots of mutants in MAX2, MAX4, PIN2, TIR3, and ACTIN2 showed a reduced low-Pi response compared with the wild type, which could be restored by auxin (for all mutants) or GR24 (for all mutants except max2-1). Changes in PIN2 polarity, actin bundling, and vesicle trafficking may be involved in the response to low Pi in roots, dependent on SL/MAX2 signalling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/eru513DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339606PMC
March 2015

Strigolactone analog GR24 triggers changes in PIN2 polarity, vesicle trafficking and actin filament architecture.

New Phytol 2014 Jun 25;202(4):1184-1196. Epub 2014 Feb 25.

Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, 50250, Israel.

Strigolactones (SLs) are plant hormones that regulate shoot and root development in a MAX2-dependent manner. The mechanism underlying SLs' effects on roots is unclear. We used root hair elongation to measure root response to SLs. We examined the effects of GR24 (a synthetic, biologically active SL analog) on localization of the auxin efflux transporter PIN2, endosomal trafficking, and F-actin architecture and dynamics in the plasma membrane (PM) of epidermal cells of the primary root elongation zone in wildtype (WT) Arabidopsis and the SL-insensitive mutant max2. We also recorded the response to GR24 of trafficking (tir3), actin (der1) and PIN2 (eir1) mutants. GR24 increased polar localization of PIN2 in the PM of epidermal cells and accumulation of PIN2-containing brefeldin A (BFA) bodies, increased ARA7-labeled endosomal trafficking, reduced F-actin bundling and enhanced actin dynamics, all in a MAX2-dependent manner. Most of the der1 and tir3 mutant lines also displayed reduced sensitivity to GR24 with respect to root hair elongation. We suggest that SLs increase PIN2 polar localization, PIN2 endocytosis, endosomal trafficking, actin debundling and actin dynamics in a MAX2-dependent fashion. This enhancement might underlie the WT root's response to SLs, and suggests noncell autonomous activity of SLs in roots.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.12744DOI Listing
June 2014

Strigolactone signaling in the endodermis is sufficient to restore root responses and involves SHORT HYPOCOTYL 2 (SHY2) activity.

New Phytol 2013 May 21;198(3):866-874. Epub 2013 Feb 21.

Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, PO Box 6, Bet Dagan, 50250, Israel.

Strigolactones (SLs) are plant hormones and regulators of root development, including lateral root (LR) formation, root hair (RH) elongation and meristem cell number, in a MORE AXILLARY GROWTH 2 (MAX2)-dependent way. However, whether SL signaling is acting cell-autonomously or in a non-cell-autonomous way in roots is unclear. We analyzed root phenotype, hormonal responses and gene expression in multiple lines of Arabidopsis thaliana max2-1 mutants expressing MAX2 under various tissue-specific promoters and shy2 mutants. The results demonstrate for the first time that expression of MAX2 under the SCARECROW (SCR) promoter, expressed mainly in the root endodermis, is sufficient to confer SL sensitivity in the root for RH, LR and meristem cell number. Moreover, loss of function mutation of SHORT HYPOCOTYL 2 (SHY2), a key component in auxin and cytokinin regulation of meristem size, has been found to be insensitive to SLs in relation to LR formation and meristem cell number. Endodermal SL signaling, mediated by MAX2, is sufficient to confer SL sensitivity in root, and SHY2 may participate in SL signaling to regulate meristem size and LR formation. These SL signaling pathways thus may act through modulation of auxin flux in the root tip, and may indicate a root-specific, yet non-cell-autonomous regulatory mode of action.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.12189DOI Listing
May 2013

Strigolactones are involved in root response to low phosphate conditions in Arabidopsis.

Plant Physiol 2012 Nov 11;160(3):1329-41. Epub 2012 Sep 11.

Institute of Plant Sciences, Agricultural Research Organization, Bet Dagan 50250, Israel.

Strigolactones (SLs) are plant hormones that suppress lateral shoot branching, and act to regulate root hair elongation and lateral root formation. Here, we show that SLs are regulators of plant perception of or response to low inorganic phosphate (Pi) conditions. This regulation is mediated by MORE AXILLARY GROWTH2 (MAX2) and correlated with transcriptional induction of the auxin receptor TRANSPORT INHIBITOR RESPONSE1 (TIR1). Mutants of SL signaling (max2-1) or biosynthesis (max4-1) showed reduced response to low Pi conditions relative to the wild type. In max4-1, but not max2-1, the reduction in response to low Pi was compensated by the application of a synthetic strigolactone GR24. Moreover, AbamineSG, which decreases SL levels in plants, reduced the response to low Pi in the wild type, but not in SL-signaling or biosynthesis mutants. In accordance with the reduced response of max2-1 to low Pi relative to the wild type, several phosphate-starvation response and phosphate-transporter genes displayed reduced induction in max2-1, even though Pi content in max2-1 and the wild type were similar. Auxin, but not ethylene, was sufficient to compensate for the reduced max2-1 response to low Pi conditions. Moreover, the expression level of TIR1 was induced under low Pi conditions in the wild type, but not in max2-1. Accordingly, the tir1-1 mutant showed a transient reduction in root hair density in comparison with the wild type under low Pi conditions. Therefore, we suggest that the response of plants to low Pi is regulated by SLs; this regulation is transmitted via the MAX2 component of SL signaling and is correlated with transcriptional induction of the TIR1 auxin receptor.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1104/pp.112.202358DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490576PMC
November 2012

Light is a positive regulator of strigolactone levels in tomato roots.

J Plant Physiol 2011 Nov 28;168(16):1993-6. Epub 2011 Jul 28.

Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, PO Box 6, Bet Dagan 50250, Israel.

Strigolactones (SLs) or closely related molecules were recently identified as phytohormones, acting as long-distance branching factors that suppress growth of pre-formed axillary buds in the shoot. The SL signaling pathways and light appear to be connected, as SLs were shown to induce light-regulated pathways and to mimic light-adapted plant growth. However, it is not yet clear how light affects SL levels. Here, we examined the effect of different light intensities on SL levels in tomato roots. The results show that light intensity, above a certain threshold, is a positive regulator of SL levels and of Sl-CCD7 transcription; Sl-CCD7 is involved in SLs biosynthesis in tomato. Moreover, SL accumulation in plant roots is shown to be a time-dependent process. At least some of the similar effects of light and SLs on plant responses might result from a positive effect of light on SL levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2011.05.022DOI Listing
November 2011

Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis.

J Exp Bot 2011 May 9;62(8):2915-24. Epub 2011 Feb 9.

Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, PO Box 6, Bet Dagan 50250, Israel.

Strigolactones (SLs) or derivatives thereof have been identified as phytohormones, and shown to act as long-distance shoot-branching inhibitors. In Arabidopsis roots, SLs have been suggested to have a positive effect on root-hair (RH) elongation, mediated via the MAX2 F-box. Two other phytohormones, auxin and ethylene, have been shown to have positive effects on RH elongation. Hence, in the present work, Arabidopsis RH elongation was used as a bioassay to determine epistatic relations between SLs, auxin, and ethylene. Analysis of the effect of hormonal treatments on RH elongation in the wild type and hormone-signalling mutants suggested that SLs and ethylene regulate RH elongation via a common regulatory pathway, in which ethylene is epistatic to SLs, whereas the effect of SLs on RH elongation requires ethylene synthesis. SL signalling was not needed for the auxin response, whereas auxin signalling was not necessary, but enhanced RH response to SLs, suggesting that the SL and auxin hormonal pathways converge for regulation of RH elongation. The ethylene pathway requirement for the RH response to SLs suggests that ethylene forms a cross-talk junction between the SL and auxin pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erq464DOI Listing
May 2011

Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis.

Planta 2011 Jan 16;233(1):209-16. Epub 2010 Nov 16.

Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel.

Strigolactones (SLs) have been proposed as a new group of plant hormones, inhibiting shoot branching, and as signaling molecules for plant interactions. Here, we present evidence for effects of SLs on root development. The analysis of mutants flawed in SLs synthesis or signaling suggested that the absence of SLs enhances lateral root formation. In accordance, roots grown in the presence of GR24, a synthetic bioactive SL, showed reduced number of lateral roots in WT and in max3-11 and max4-1 mutants, deficient in SL synthesis. The GR24-induced reduction in lateral roots was not apparent in the SL signaling mutant max2-1. Moreover, GR24 led to increased root-hair length in WT and in max3-11 and max4-1 mutants, but not in max2-1. SLs effect on lateral root formation and root-hair elongation may suggest a role for SLs in the regulation of root development; perhaps, as a response to growth conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-010-1310-yDOI Listing
January 2011

Strigolactones are positive regulators of light-harvesting genes in tomato.

J Exp Bot 2010 Jun 25;61(11):3129-36. Epub 2010 May 25.

Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, Israel.

Strigolactones are newly identified plant hormones, shown to participate in the regulation of lateral shoot branching and root development. However, little is known about their effects on biological processes, genes, and proteins. Transcription profiling of roots treated with GR24, a synthetic strigolactone with proven biological activity, and/or indole acetic acid (IAA) was combined with physiological and transcriptional analysis of a tomato mutant (Sl-ORT1) deficient in strigolactone production. GR24 treatment led to markedly induced expression of genes putatively involved in light harvesting. This was apparent in both the presence and absence of exogenously applied IAA, but not with IAA treatment alone. Following validation of the microarray results, transcriptional induction by light of the GR24-induced genes was demonstrated in leaves exposed to high or low light intensities. Sl-ORT1 contained less chlorophyll and showed reduced expression of light harvesting-associated genes than the wild type (WT). Moreover, perfusion of GR24 into WT and Sl-ORT1 leaves led to induction of most of the examined light harvesting-associated genes. Results suggest that GR24 treatment interferes with the root's response to IAA treatment and that strigolactones are potentially positive regulators of light harvesting in plants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erq138DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892153PMC
June 2010

A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions.

J Exp Bot 2010 Jun 1;61(6):1739-49. Epub 2010 Mar 1.

Institute of Plant Sciences, Agricultural Research Organization, the Volcani Center, PO Box 6, Bet Dagan 50250, Israel.

Strigolactones are considered a new group of plant hormones. Their role as modulators of plant growth and signalling molecules for plant interactions first became evident in Arabidopsis, pea, and rice mutants that were flawed in strigolactone production, release, or perception. The first evidence in tomato (Solanum lycopersicon) of strigolactone deficiency is presented here. Sl-ORT1, previously identified as resistant to the parasitic plant Orobanche, had lower levels of arbuscular mycorrhizal fungus (Glomus intraradices) colonization, possibly as a result of its reduced ability to induce mycorrhizal hyphal branching. Biochemical analysis of mutant root extracts suggested that it produces only minute amounts of two of the tomato strigolactones: solanacol and didehydro-orobanchol. Accordingly, the transcription level of a key enzyme (CCD7) putatively involved in strigolactone synthesis in tomato was reduced in Sl-ORT1 compared with the wild type (WT). Sl-ORT1 shoots exhibited increased lateral shoot branching, whereas exogenous application of the synthetic strigolactone GR24 to the mutant restored the WT phenotype by reducing the number of lateral branches. Reduced lateral shoot branching was also evident in grafted plants which included a WT interstock, which was grafted between the mutant rootstock and the scion. In roots of these grafted plants, the CCD7 transcription level was not significantly induced, nor was mycorrhizal sensitivity restored. Hence, WT-interstock grafting, which restores mutant shoot morphology to WT, does not restore mutant root properties to WT. Characterization of the first tomato strigolactone-deficient mutant supports the putative general role of strigolactones as messengers of suppression of lateral shoot branching in a diversity of plant species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erq041DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852664PMC
June 2010

Microarray analysis and functional tests suggest the involvement of expansins in the early stages of symbiosis of the arbuscular mycorrhizal fungus Glomus intraradices on tomato (Solanum lycopersicum).

Mol Plant Pathol 2010 Jan;11(1):121-35

Department of Agronomy and Natural Resources, Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, PO Box 6, Bet Dagan 50250, Israel.

Arbuscular mycorrhizal (AM) symbiosis occurs between fungi of the phylum Glomeromycota and most terrestrial plants. However, little is known about the molecular symbiotic signalling between AM fungi (AMFs) and non-leguminous plant species. We sought to further elucidate the molecular events occurring in tomato, a non-leguminous host plant, during the early, pre-symbiotic stage of AM symbiosis, i.e. immediately before and after contact between the AMF (Glomus intraradices) and the host. We adopted a semi-synchronized AMF root infection protocol, followed by genomic-scale, microarray-based, gene expression profiling at several defined time points during pre-symbiotic AM stages. The microarray results suggested differences in the number of differentially expressed genes and in the differential regulation of several functional groups of genes at the different time points examined. The microarray results were validated and one of the genes induced during contact between AMF and tomato, the expansin-like EXLB1, was functionally analysed. Expansins, encoded by a large multigene family, facilitate plant cell expansion. However, no biological or biochemical function has yet been established for plant-originated expansin-like proteins. EXLB1 transcripts were localized early during the association to cells that may perceive the fungal signal, and later during the association in close proximity to sites of AMF hypha-root colonization. Moreover, in transgenic roots, we demonstrated that a reduction in the steady-state level of EXLB1 transcript was correlated with a reduced rate of infection, reduced arbuscule expansion and reduced AMF spore formation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1364-3703.2009.00581.xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640415PMC
January 2010