Publications by authors named "Edson Assunção Mareco"

12 Publications

  • Page 1 of 1

An insight on the impact of teleost whole genome duplication on the regulation of the molecular networks controlling skeletal muscle growth.

PLoS One 2021 22;16(7):e0255006. Epub 2021 Jul 22.

Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.

Fish muscle growth is a complex process regulated by multiple pathways, resulting on the net accumulation of proteins and the activation of myogenic progenitor cells. Around 350-320 million years ago, teleost fish went through a specific whole genome duplication (WGD) that expanded the existent gene repertoire. Duplicated genes can be retained by different molecular mechanisms such as subfunctionalization, neofunctionalization or redundancy, each one with different functional implications. While the great majority of ohnolog genes have been identified in the teleost genomes, the effect of gene duplication in the fish physiology is still not well characterized. In the present study we studied the effect of WGD on the transcription of the duplicated components controlling muscle growth. We compared the expression of lineage-specific ohnologs related to myogenesis and protein balance in the fast-skeletal muscle of pacus (Piaractus mesopotamicus-Ostariophysi) and Nile tilapias (Oreochromis niloticus-Acanthopterygii) fasted for 4 days and refed for 3 days. We studied the expression of 20 ohnologs and found that in the great majority of cases, duplicated genes had similar expression profiles in response to fasting and refeeding, indicating that their functions during growth have been conserved during the period after the WGD. Our results suggest that redundancy might play a more important role in the retention of ohnologs of regulatory pathways than initially thought. Also, comparison to non-duplicated orthologs showed that it might not be uncommon for the duplicated genes to gain or loss new regulatory elements simultaneously. Overall, several of duplicated ohnologs have similar transcription profiles in response to pro-growth signals suggesting that evolution tends to conserve ohnolog regulation during muscle development and that in the majority of ohnologs related to muscle growth their functions might be very similar.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0255006PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8297816PMC
July 2021

Ascorbic Acid Supplementation Improves Skeletal Muscle Growth in Pacu () Juveniles: In Vivo and In Vitro Studies.

Int J Mol Sci 2021 Mar 15;22(6). Epub 2021 Mar 15.

Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil.

In fish, fasting leads to loss of muscle mass. This condition triggers oxidative stress, and therefore, antioxidants can be an alternative to muscle recovery. We investigated the effects of antioxidant ascorbic acid (AA) on the morphology, antioxidant enzyme activity, and gene expression in the skeletal muscle of pacu () following fasting, using in vitro and in vivo strategies. Isolated muscle cells of the pacu were subjected to 72 h of nutrient restriction, followed by 24 h of incubation with nutrients or nutrients and AA (200 µM). Fish were fasted for 15 days, followed by 6 h and 15 and 30 days of refeeding with 100, 200, and 400 mg/kg of AA supplementation. AA addition increased cell diameter and the expression of anabolic and cell proliferation genes in vitro. In vivo, 400 mg/kg of AA increased anabolic and proliferative genes expression at 6 h of refeeding, the fiber diameter and the expression of genes related to cell proliferation at 15 days, and the expression of catabolic and oxidative metabolism genes at 30 days. Catalase activity remained low in the higher supplementation group. In conclusion, AA directly affected the isolated muscle cells, and the higher AA supplementation positively influenced muscle growth after fasting.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22062995DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998472PMC
March 2021

Equine chorionic gonadotropin drives the transcriptional profile of immature cumulus-oocyte complexes and in vitro-produced blastocysts of superstimulated Nelore cows.

Mol Reprod Dev 2019 11 6;86(11):1639-1651. Epub 2019 Aug 6.

Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, São Paulo, Brazil.

Studies have shown that the use of equine chorionic gonadotropin (eCG), which binds both follicle stimulating hormone (FSH) and luteinizing hormone (LH) receptors, could modify the female reproductive tract. We, thus, aimed to quantify the messenger RNA (mRNA) abundance of genes related to cumulus-oocyte complexes (COCs) and embryo quality in Nelore cows (Bos taurus indicus) submitted to ovarian superstimulation using only FSH (FSH group; n = 10) or replacement of the last two doses of FSH by eCG (FSH/eCG group; n = 10). All animals were slaughtered and the ovarian antral follicles from both groups (10-14 mm in diameter) were aspirated for cumulus, oocyte and in vitro embryo production gene expression analysis. The relative mRNA abundance of 96 genes related to COCs development and embryo quality was measured by RT-qPCR. We found that oocytes are more affected by eCG use and that 35 genes involved in lipid metabolism, oxidative stress, transcriptional control, and cellular development were upregulated in the FSH/eCG group. In blastocysts, lipid metabolism seems to be the main pathway regulated by eCG use. We suggest that these multiple effects could be due to the ability of eCG to bind LHR and FSHR, which could activate multiple signal transduction pathways in the superstimulated ovary, further impacting the transcriptional profile of COCs and blastocysts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrd.23251DOI Listing
November 2019

The combination of resveratrol and exercise enhances muscle growth characteristics in pacu (Piaractus mesopotamicus).

Comp Biochem Physiol A Mol Integr Physiol 2019 09 8;235:46-55. Epub 2019 May 8.

Department of Morphology, Institute of Bioscience, Sao Paulo State University, UNESP, Botucatu, SP, Brazil; Aquaculture Center, CAUNESP, Sao Paulo State University, UNESP, Jaboticabal, SP, Brazil. Electronic address:

Pacu is a tropical fish with important value to aquaculture. During cellular metabolism, reactive oxygen species (ROS) are produced, which can influence muscle growth. Resveratrol is an effective antioxidant that scavenges ROS and can modulate physical performance preventing oxidative stress. We investigated the effects of resveratrol and exercise on pacu muscle growth characteristics. Four groups were used: fish fed with control diet /without exercise (C); fish fed with control diet/subjected to exercise (CE); fish fed resveratrol-supplemented diet/without exercise (R); and fish fed resveratrol-supplemented diet/subjected to exercise (RE). At 30 days, the RE group presented a significant increase in body weight, fewer muscle fibers in the 20-40 μm and more fibers in the >60 μm diameter class compared to the C group. At day 7, catalase activity decreased in CE and RE groups. Superoxide dismutase activity decreased only in the CE group. Myod and mtor gene expression was higher in R and RE and igf-1 was up-regulated in the RE group. Murf1a level decreased in CE, R, and RE, while sdha expression was higher in the RE group. We suggest that resveratrol in combination with exercise was beneficial for muscle growth and metabolism, increasing the expression levels of genes related to muscle anabolism and oxidative metabolism, besides the decrease of catabolic gene expression. Notably, all of these changes occurred together with muscle hypertrophy and increased body weight. Our results show a positive application for resveratrol in association with exercise as a strategy to improve the growth performance of juvenile pacus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2019.05.002DOI Listing
September 2019

Proteomic analysis of the fast-twitch muscle of pacu (Piaractus mesopotamicus) after prolonged fasting and compensatory growth.

Comp Biochem Physiol Part D Genomics Proteomics 2019 06 24;30:321-332. Epub 2019 Apr 24.

Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil. Electronic address:

Protocols that improve growth performance in fish while assuring product quality are important for aquaculture. Fasting followed by refeeding may promote compensatory growth, thus optimizing growth performance. During fasting and refeeding, fast-twitch muscle, which comprises most of fish fillet, undergoes intense plasticity. In this work, we studied the proteome of pacu (Piaractus mesopotamicus) fast-twitch muscle after 30 days of fasting (D30), 30 days of refeeding (D60) and 60 days of refeeding (D90) with two-dimensional electrophoresis, mass spectrometry and bioinformatics. Body mass, growth rate and muscle histology were also assessed. At D30, fish presented muscle catabolism and decreased growth. Proteomic analysis showed that metabolism proteins were the most affected, up and downregulated. Cytoskeleton and amino acid biosynthesis proteins were downregulated, while nuclear and regulatory proteins were upregulated. At D60, fish showed accelerated growth, despite the body mass not completely recovering. Metabolism proteins were still the most affected. Amino acid biosynthesis proteins became upregulated, while cytoskeleton proteins remained downregulated. At D90, the fish presented total compensatory growth. Many metabolic proteins were up or downregulated. Few cytoskeleton proteins remained differentially expressed. Amino acid biosynthesis proteins were mostly upregulated, but less than at D60. Prolonged fasting followed by refeeding also led to the regulation of possible meat quality biomarkers, such as antioxidant enzymes. This fact suggests possible consequences of this protocol on fish meat quality. Our work also enriches our knowledge on proteomic changes during muscle plasticity that occur during fasting and refeeding diet protocols.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbd.2019.04.005DOI Listing
June 2019

Ascorbic acid stimulates the in vitro myoblast proliferation and migration of pacu (Piaractus mesopotamicus).

Sci Rep 2019 02 18;9(1):2229. Epub 2019 Feb 18.

São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, São Paulo, Brazil.

The postembryonic growth of skeletal muscle in teleost fish involves myoblast proliferation, migration and differentiation, encompassing the main events of embryonic myogenesis. Ascorbic acid plays important cellular and biochemical roles as an antioxidant and contributes to the proper collagen biosynthesis necessary for the structure of connective and bone tissues. However, whether ascorbic acid can directly influence the mechanisms of fish myogenesis and skeletal muscle growth remains unclear. The aim of our work was to evaluate the effects of ascorbic acid supplementation on the in vitro myoblast proliferation and migration of pacu (Piaractus mesopotamicus). To provide insight into the potential antioxidant role of ascorbic acid, we also treated myoblasts in vitro with menadione, which is a powerful oxidant. Our results show that ascorbic acid-supplemented myoblasts exhibit increased proliferation and migration and are protected against the oxidative stress caused by menadione. In addition, ascorbic acid increased the activity of the antioxidant enzyme superoxide dismutase and the expression of myog and mtor, which are molecular markers related to skeletal muscle myogenesis and protein synthesis, respectively. This work reveals a direct influence of ascorbic acid on the mechanisms of pacu myogenesis and highlights the potential use of ascorbic acid for stimulating fish skeletal muscle growth.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-38536-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6379551PMC
February 2019

Influence of temperature and exercise on growth performance, muscle, and adipose tissue in pacus (Piaractus mesopotamicus).

J Therm Biol 2017 Oct 8;69:221-227. Epub 2017 Aug 8.

Universidade do Oeste Paulista - UNOESTE, Brazil.

The aim of this study was to evaluate the effects of temperature and swimming exercise on fish growth in pacus (Piaractus mesopotamicus). Pacus weighing 0.9 - 1.9g and 2.7 - 4.2cm in standard length were cultivated at an initial density of 120 fish m in 3 recirculation systems containing 6 water tanks at a volume of 0.5m each at temperatures of 24, 28 and 32°C. At each temperature, three tanks were modified to generate exercise activity in the specimens and force the fish to swim under a current speed of 27.5cms. At the end of the experiment, the following metrics were evaluated: fish performance, morphometry (length, width, height and perimeter in different body positions), and the diameter and density of muscle and subcutaneous ventral adipose tissues. At 28°C, pacus were both heavier and had greater weight gain after 240 days of cultivation. Additionally, exercise improved the feed conversion. An increase of 4°C (30°C) did not provide any improvement in the performance of the fish. However, swimming exercise improved the performance of pacus, providing increases of 38% and a 15% improvement in feed conversion. Both temperature and exercise influenced the body morphology (especially in the caudal region) and the cellularity of white and red muscle fibers and adipocytes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtherbio.2017.08.004DOI Listing
October 2017

Food restriction increase the expression of mTORC1 complex genes in the skeletal muscle of juvenile pacu (Piaractus mesopotamicus).

PLoS One 2017 15;12(5):e0177679. Epub 2017 May 15.

Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil.

Skeletal muscle is capable of phenotypic adaptation to environmental factors, such as nutrient availability, by altering the balance between muscle catabolism and anabolism that in turn coordinates muscle growth. Small noncoding RNAs, known as microRNAs (miRNAs), repress the expression of target mRNAs, and many studies have demonstrated that miRNAs regulate the mRNAs of catabolic and anabolic genes. We evaluated muscle morphology, gene expression of components involved in catabolism, anabolism and energetic metabolism and miRNAs expression in both the fast and slow muscle of juvenile pacu (Piaractus mesopotamicus) during food restriction and refeeding. Our analysis revealed that short periods of food restriction followed by refeeding predominantly affected fast muscle, with changes in muscle fiber diameter and miRNAs expression. There was an increase in the mRNA levels of catabolic pathways components (FBXO25, ATG12, BCL2) and energetic metabolism-related genes (PGC1α and SDHA), together with a decrease in PPARβ/δ mRNA levels. Interestingly, an increase in mRNA levels of anabolic genes (PI3K and mTORC1 complex: mTOR, mLST8 and RAPTOR) was also observed during food restriction. After refeeding, muscle morphology showed similar patterns of the control group; the majority of genes were slightly up- or down-regulated in fast and slow muscle, respectively; the levels of all miRNAs increased in fast muscle and some of them decreased in slow muscle. Our findings demonstrated that a short period of food restriction in juvenile pacu had a considerable impact on fast muscle, increasing the expression of anabolic (PI3K and mTORC1 complex: mTOR, mLST8 and RAPTOR) and energetic metabolism genes. The miRNAs (miR-1, miR-206, miR-199 and miR-23a) were more expressed during refeeding and while their target genes (IGF-1, mTOR, PGC1α and MAFbx), presented a decreased expression. The alterations in mTORC1 complex observed during fasting may have influenced the rates of protein synthesis by using amino acids from protein degradation as an alternative mechanism to preserve muscle phenotype and metabolic demand maintenance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177679PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432107PMC
September 2017

Differential microRNA Expression in Fast- and Slow-Twitch Skeletal Muscle of Piaractus mesopotamicus during Growth.

PLoS One 2015 3;10(11):e0141967. Epub 2015 Nov 3.

Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil.

Pacu (Piaractus mesopotamicus) is a Brazilian fish with a high economic value in pisciculture due to its rusticity and fast growth. Postnatal growth of skeletal muscle in fish occurs by hyperplasia and/or hypertrophy, processes that are dependent on the proliferation and differentiation of myoblasts. A class of small noncoding RNAs, known as microRNAs (miRNAs), represses the expression of target mRNAs, and many studies have demonstrated that miR-1, miR-133, miR-206 and miR-499 regulate different processes in skeletal muscle through the mRNA silencing of hdac4 (histone deacetylase 4), srf (serum response factor), pax7 (paired box 7) and sox6 ((sex determining region Y)-box 6), respectively. The aim of our work was to evaluate the expression of these miRNAs and their putative target mRNAs in fast- and slow-twitch skeletal muscle of pacu during growth. We used pacus in three different development stages: larval (aged 30 days), juvenile (aged 90 days and 150 days) and adult (aged 2 years). To complement our study, we also performed a pacu myoblast cell culture, which allowed us to investigate miRNA expression in the progression from myoblast proliferation to differentiation. Our results revealed an inverse correlation between the expression of the miRNAs and their target mRNAs, and there was evidence that miR-1 and miR-206 may regulate the differentiation of myoblasts, whereas miR-133 may regulate the proliferation of these cells. miR-499 was highly expressed in slow-twitch muscle, which suggests its involvement in the specification of the slow phenotype in muscle fibers. The expression of these miRNAs exhibited variations between different development stages and between distinct muscle twitch phenotypes. This work provides the first identification of miRNA expression profiles in pacu skeletal muscle and suggests an important role of these molecules in muscle growth and in the maintenance of the muscle phenotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141967PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631509PMC
June 2016

High Final Energy of Low-Level Gallium Arsenide Laser Therapy Enhances Skeletal Muscle Recovery without a Positive Effect on Collagen Remodeling.

Photochem Photobiol 2015 Jul-Aug;91(4):957-65. Epub 2015 Mar 28.

Department of Morphology, Bioscience Institute State University of São Paulo, UNESP, Botucatu, SP, Brazil.

The aim of this study was to evaluate the effects of a Gallium Arsenide (GaAs) laser, using a high final energy of 4.8 J, during muscle regeneration after cryoinjury. Thirty Wistar rats were divided into three groups: Control (C, n = 10); Injured (I, n = 10) and Injured and laser treated (Injured/LLLT, n = 10). The cryoinjury was induced in the central region of the tibialis anterior muscle (TA). The applications of the laser (904 nm, 50 mW average power) were initiated 24 h after injury, at energy density of 69 J cm(-1) for 48 s, for 5 days, to two points of the lesion. Twenty-four hours after the final application, the TA muscle was removed and frozen in liquid nitrogen to assess the general muscle morphology and the gene expression of TNF-α, TGF-β, MyoD, and Myogenin. The Injured/LLLT group presented a higher number of regenerating fibers and fewer degenerating fibers (P < 0.05) without changes in the collagen remodeling. In addition, the Injured/LLLT group presented a significant decrease in the expression of TNF-α and myogenin compared to the injured group (P < 0.05). The results suggest that the GaAs laser, using a high final energy after cryoinjury, promotes muscle recovery without changing the collagen remodeling in the muscle extracellular matrix.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/php.12446DOI Listing
December 2015

Differential expression of a retrotransposable element, , in fish from different Amazonian environments.

Mob Genet Elements 2014 21;4:e30003. Epub 2014 Jul 21.

UNIP-University of São Paulo (Universidade Paulista); Instituto de Ciências da Saúde; Bauru, SP, Brazil.

Transposable elements (TEs) are DNA sequences that have the ability to move and replicate within the genomes. TEs can be classified according to their intermediates of transposition, RNA (retrotransposons) or DNA. In some aquatic organisms, it has been observed that environmental factors such as pH, temperature and pollution may stimulate differential transcription and mobilization of retrotransposons. In light of this information, the present study sought to evaluate the expression of TE transcripts in , which is a very commercially exploited fish in Brazil. In order to establish a comparative analysis using real-time PCR, the samples were collected from Amazonian rivers with different physical and chemical characteristics (distinguished by clear water and black water). Quantitative RT-PCR analyses revealed a differential pattern of expression between tissues collected from different types of water (clear and black waters). When it came to the hepatic and muscle tissues sampled, the levels of transcripts were significantly different between the two Amazonian water types. These results suggest that environmental conditions operate differently in the regulation of transcription in results which have implications in the reshaping of the genome against environmental variations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113519PMC
http://dx.doi.org/10.4161/mge.30003DOI Listing
July 2014

Rearing temperature induces changes in muscle growth and gene expression in juvenile pacu (Piaractus mesopotamicus).

Comp Biochem Physiol B Biochem Mol Biol 2014 Mar 21;169:31-7. Epub 2013 Dec 21.

São Paulo State University, UNESP, Institute of Biosciences, Department of Morphology and CAUNESP, 18618-970 Botucatu, Sao Paulo, Brazil. Electronic address:

Pacu (Piaractus mesopotamicus) is a fast-growing fish that is extensively used in Brazilian aquaculture programs and shows a wide range of thermal tolerance. Because temperature is an environmental factor that influences the growth rate of fish and is directly related to muscle plasticity and growth, we hypothesized that different rearing temperatures in juvenile pacu, which exhibits intense muscle growth by hyperplasia, can potentially alter the muscle growth patterns of this species. The aim of this study was to analyze the muscle growth characteristics together with the expression of the myogenic regulatory factors MyoD and myogenin and the growth factor myostatin in juvenile pacu that were submitted to different rearing temperatures. Juvenile fish (1.5 g weight) were distributed in tanks containing water and maintained at 24°C (G24), 28 °C (G28) and 32 °C (G32) (three replicates for each group) for 60 days. At days 30 and 60, the fish were anesthetized and euthanized, and muscle samples (n=12) were collected for morphological, morphometric and gene expression analyses. At day 30, the body weight and standard length were lower for G24 than for G28 and G32. Muscle fiber frequency in the <25 μm class was significantly higher in G24, and the >50 μm class was lower in G24. MyoD gene expression was higher in G24 compared with that in G28 and G32, and myogenin and myostatin mRNA levels were higher in G24 than G28. At day 60, the body weight and the standard length were higher in G32 but lower in G24. The frequency distribution of the <25 μm diameter muscle fibers was higher in G24, and that of the >50 μm class was lower in G24. MyoD mRNA levels were higher in G24 and G32, and myogenin mRNA levels were similar between G24 and G28 and between G24 and G32 but were higher in G28 compared to G32. The myostatin mRNA levels were similar between the studied temperatures. In light of our results, we conclude that low rearing temperature altered the expression of muscle growth-related genes and induced a delay in muscle growth in juvenile pacu (P. mesopotamicus). Our study provides a clear example of thermally induced phenotypic plasticity in pacu fish and shows that changing the rearing temperature during the juvenile stage can have a considerable effect on gene expression and muscle growth in this species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2013.12.004DOI Listing
March 2014
-->