Publications by authors named "Edith Hofer"

72 Publications

The relationship between plasma free fatty acids, cognitive function and structural integrity of the brain in middle-aged healthy humans.

Aging (Albany NY) 2021 Sep 23;13(18):22078-22091. Epub 2021 Sep 23.

Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria.

Background: The cerebral composition of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) is believed to influence cognitive function and structural damage of the aging brain. However, existing data is inconsistent.

Materials And Methods: This retrospective study explored the association between free plasma PUFA concentrations, cognitive function and brain structure atrophy in a well-characterized community-dwelling cohort of elderly individuals without stroke and dementia. Ten different fatty acids were analyzed in stored plasma samples from 391 non-demented elderly individuals by gas chromatography mass spectrometry. Neuropsychiatric tests capturing memory, executive function and visuopractical skills were performed in all participants. Brain atrophy was assessed by MRI in a subset of 167 individuals.

Results: Higher plasma concentrations of free ω-6 PUFAs ( = 0.042), and, in particular, linoleic acid ( = 0.01), were significantly associated with lower executive function. No significant association existed between ω-3 PUFA concentrations and cognitive functioning. The volume of the frontal lobes was inversely associated with ω-6 PUFAs, whereas ω-3 PUFAs were positively related with temporal lobe volumes. All associations did not withstand correction for multiple comparisons.

Conclusions: Our study suggests subtle effects of PUFA imbalances on cognition and brain structure. Yet the observed associations are weak and unlikely to be of clinical relevance. The brain regions that seem to be most sensitive to imbalances of ω-3 and ω-6 PUFAs are the frontal and temporal lobes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/aging.203573DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507298PMC
September 2021

Predicting atrial fibrillation after cryptogenic stroke via a clinical risk score-a prospective observational study.

Eur J Neurol 2021 Sep 14. Epub 2021 Sep 14.

Department of Neurology, Medical University of Graz, Graz, Austria.

Background And Purpose: Atrial fibrillation (AF) often remains undiagnosed in cryptogenic stroke (CS), mostly because of limited availability of cardiac long-term rhythm monitoring. There is an unmet need for a pre-selection of CS patients benefitting from such work-up. A clinical risk score was therefore developed for the prediction of AF after CS and its performance was evaluated over 1 year of follow-up.

Methods: Our proposed risk score ranges from 0 to 16 points and comprises variables known to be associated with occult AF in CS patients including age, N-terminal pro-brain natriuretic peptide, electrocardiographic and echocardiographic features (supraventricular premature beats, atrial runs, atrial enlargement, left ventricular ejection fraction) and brain imaging markers (multi-territory/prior cortical infarction). All CS patients admitted to our Stroke Unit between March 2018 and August 2019 were prospectively followed for AF detection over 1 year after discharge.

Results: During the 1-year follow-up, 24 (16%) out of 150 CS patients with AF (detected via electrocardiogram controls, n = 18; loop recorder monitoring, n = 6) were diagnosed. Our predefined AF Risk Score (cutoff ≥4 points; highest Youden's index) had a sensitivity of 92% and a specificity of 67% for 1-year prediction of AF. Notably, only two CS patients with <4 score points were diagnosed with AF later on (negative predictive value 98%).

Conclusions: A clinical risk score for 1-year prediction of AF in CS with high sensitivity, reasonable specificity and excellent negative predictive value is presented. Generalizability of our score needs to be tested in external cohorts with continuous cardiac rhythm monitoring.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ene.15102DOI Listing
September 2021

Prediction of dementia using diffusion tensor MRI measures: the OPTIMAL collaboration.

J Neurol Neurosurg Psychiatry 2021 Sep 11. Epub 2021 Sep 11.

Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK

Objectives: It has been suggested that diffusion tensor imaging (DTI) measures sensitive to white matter (WM) damage may predict future dementia risk not only in cerebral small vessel disease (SVD), but also in mild cognitive impairment. To determine whether DTI measures were associated with cognition cross-sectionally and predicted future dementia risk across the full range of SVD severity, we established the International OPtimising mulTImodal MRI markers for use as surrogate markers in trials of Vascular Cognitive Impairment due to cerebrAl small vesseL disease collaboration which included six cohorts.

Methods: Among the six cohorts, prospective data with dementia incidences were available for three cohorts. The associations between six different DTI measures and cognition or dementia conversion were tested. The additional contribution to prediction of other MRI markers of SVD was also determined.

Results: The DTI measure mean diffusivity (MD) median correlated with cognition in all cohorts, demonstrating the contribution of WM damage to cognition. Adding MD median significantly improved the model fit compared to the clinical risk model alone and further increased in all single-centre SVD cohorts when adding conventional MRI measures. Baseline MD median predicted dementia conversion. In a study with severe SVD (SCANS) change in MD median also predicted dementia conversion. The area under the curve was best when employing a multimodal MRI model using both DTI measures and other MRI measures.

Conclusions: Our results support a central role for WM alterations in dementia pathogenesis in all cohorts. DTI measures such as MD median may be a useful clinical risk predictor. The contribution of other MRI markers varied according to disease severity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jnnp-2021-326571DOI Listing
September 2021

Incidental findings of typical iNPH imaging signs in asymptomatic subjects with subclinical cognitive decline.

Fluids Barriers CNS 2021 Aug 14;18(1):37. Epub 2021 Aug 14.

Department of Neuroradiology, University Hospital of Tuebingen, Hoppe-Seyler-Strasse 3, 72076, Tuebingen, Germany.

Background: The etiology of idiopathic normal pressure hydrocephalus (iNPH) remains unclear. Little is known about the pre-symptomatic stage. This study aimed to investigate the association of neuropsychological data with iNPH-characteristic imaging changes compared to normal imaging and unspecific atrophy in a healthy population.

Methods: We extracted data from the community-dwelling Austrian Stroke Prevention Family Study (ASPS-Fam) database (2006-2010). All subjects underwent a baseline and identical follow-up examination after 3-5 years with MR imaging and an extensive neuropsychological test battery (Trail Making Test B, short physical performance balance, walking speed, memory, visuo-practical skills, composite scores of executive function and g-factor). We categorized the subjects into "iNPH"-associated, non-specific "atrophy," and "normal" based on the rating of different radiological cerebrospinal fluid (CSF) space parameters. We noted how the categories developed over time. We assessed the association of the image categories with the neuropsychological data, different demographic, and lifestyle parameters (age, sex, education, alcohol intake, arterial hypertension, hypercholesterolemia), and the extent of white matter hyperintensities. We investigated whether neuropsychological data associated with the image categories were independent from other parameters as confounders.

Results: One hundred and thirteen subjects, aged 50-70 years, were examined. The imaging category "iNPH" was only present at follow-up. A third of subjects with "atrophy" at baseline changed to the category "iNPH" at follow-up. More white matter hyperintensities (WMH) were present in later "iNPH" subjects. Subjects with "iNPH" performed worse than "normal" subjects on executive function (p = 0.0118), memory (p = 0.0109), and Trail Making Test B (TMT-B. p < 0.0001). Education, alcohol intake, diabetes, arterial hypertension, and hypercholesterolemia had no effect. Age, number of females, and the extent of white matter hyperintensities were higher in "iNPH" than in "normal" subjects but did not significantly confound the neuropsychological results.

Conclusions: Apparent asymptomatic subjects with "iNPH" imaging characteristics presented with subclinical cognitive decline and showed worse executive function, memory, and TMT-B results than "normal" subjects. WMH seem to play a role in the etiology before ventriculomegaly. Clinical screening of individuals with incidental iNPH-characteristic imaging and conspicuous results sof these neurocognitive tests needs further validation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12987-021-00268-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8364005PMC
August 2021

Association of vitamin D metabolites with cognitive function and brain atrophy in elderly individuals - the Austrian stroke prevention study.

Aging (Albany NY) 2021 04 7;13(7):9455-9467. Epub 2021 Apr 7.

Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria.

Background: Vitamin D is a well-established regulator of calcium and phosphate metabolism that has neurotrophic and neuroprotective properties. Deficiency of vitamin D has been proposed to promote cognitive dysfunction and brain atrophy. However, existing studies provide inconsistent results. Here we aimed to investigate the association between vitamin D metabolites, cognitive function and brain atrophy in a cohort of well-characterized community-dwelling elderly individuals with normal neurological status and without history of stroke and dementia.

Methods: 25(OH)D, 25(OH)D and 24,25(OH)D were measured by liquid-chromatography tandem mass-spectrometry in serum samples from 390 community-dwelling elderly individuals. All participants underwent thorough neuropsychiatric tests capturing memory, executive function and visuopractical skills. In 139 of these individuals, MRI of the brain was performed in order to capture neurodegenerative and vascular changes.

Results: Total 25(OH)D (ß=0.003, 0.037), 24,25(OH)D (ß=0.0456, p=0.010) and vitamin D metabolite ratio (VMR) (ß=0.0467, p=0.012) were significantly related to memory function. Adjustment for multiple testing weakened these relationships, but trends (p≤0.10) remained. 24,25(OH)D and VMR showed similar trends also for visuopractical skills and global cognitive function. No significant relationships existed between vitamin D metabolites and MRI derived indices of neurodegeneration and vascular changes. Sub-group analyses of individuals with low concentrations of 25(OH)D and 24,25(OH)D showed significantly worse memory function compared to individuals with normal or high concentrations.

Conclusions: Vitamin D deficient individuals appear to have a modest reduction of memory function without structural brain atrophy. Future studies should explore if vitamin D supplementation can improve cognitive function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/aging.202930DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8064143PMC
April 2021

Identifying novel genetic risk loci for lacunar stroke.

Lancet Neurol 2021 05 25;20(5):329-330. Epub 2021 Mar 25.

Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz 8036, Austria; Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz 8036, Austria.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1474-4422(21)00099-5DOI Listing
May 2021

Hospital admissions of acute cerebrovascular diseases during and after the first wave of the COVID-19 pandemic: a state-wide experience from Austria.

J Neurol 2021 Oct 27;268(10):3584-3588. Epub 2021 Feb 27.

Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8042, Graz, Austria.

We investigated hospital admission rates for the entire spectrum of acute cerebrovascular diseases and of recanalization treatments for ischaemic stroke (IS) in the Austrian federal state of Styria during and also after the first coronavirus disease 2019 (COVID-19) wave. We retrospectively identified all patients with transient ischaemic attack (TIA), IS and non-traumatic intracranial haemorrhage (ICH; including intracerebral, subdural and subarachnoid bleeding types) admitted to one of the 11 public hospitals in Styria (covering > 95% of inhospital cerebrovascular events in this region). Information was extracted from the electronic medical documentation network connecting all public Styrian hospitals. We analysed two periods of interest: (1) three peak months of the first COVID-19 wave (March-May 2020), and (2) three recovery months thereafter (June-August 2020), compared to respective periods 4 years prior (2016-2019) using Poisson regression. In the three peak months of the first COVID-19 wave, there was an overall decline in hospital admissions for acute cerebrovascular diseases (RR = 0.83, 95% CI 0.78-0.89, p < 0.001), which was significant for TIA (RR = 0.61, 95% CI 0.52-0.72, p < 0.001) and ICH (0.78, 95% CI 0.67-0.91, p = 0.02), but not for IS (RR = 0.93, 95% CI 0.85-1, p = 0.08). Thrombolysis and thrombectomy numbers were not different compared to respective months 4 years prior. In the recovery period after the first COVID-19 wave, TIA (RR = 0.82, 95% CI 0.71-0.96, p = 0.011) and ICH (RR = 0.86, 95% CI 0.74-0.99, p = 0.045) hospitalizations remained lower, while the frequency of IS and recanalization treatments was unchanged. In this state-wide analysis covering all types of acute cerebrovascular diseases, hospital admissions for TIA and ICH were reduced during and also after the first wave of the COVID-19 pandemic, but hospitalizations and recanalization treatments for IS were not affected in these two periods.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00415-021-10488-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914046PMC
October 2021

Cerebral small vessel disease genomics and its implications across the lifespan.

Nat Commun 2020 12 8;11(1):6285. Epub 2020 Dec 8.

University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA.

White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5×10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-19111-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7722866PMC
December 2020

Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline.

Kidney Int 2021 04 31;99(4):926-939. Epub 2020 Oct 31.

Division of Nephrology, University of Washington, Seattle, Washington, USA; Kidney Research Institute, University of Washington, Seattle, Washington, USA.

Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m at follow-up among those with eGFRcrea 60 mL/min/1.73m or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.kint.2020.09.030DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010357PMC
April 2021

Circle of Willis variants are not associated with thrombectomy outcomes.

Stroke Vasc Neurol 2021 Jun 12;6(2):310-313. Epub 2020 Oct 12.

Department of Neurology & Neurological Sciences, Stanford University, Stanford, California, USA.

Background: The circle of Willis (COW) is part of the brain collateral system. The absence of COW segments may affect functional outcome in patients with ischaemic stroke undergoing endovascular therapy.

Methods: In 182 patients in the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution 2 Study and the CT Perfusion to Predict Response to Recanalisation in Ischaemic Stroke Project, COW anatomy was evaluated on postinterventional magnetic resonance angiography. The absence of the posterior communicating artery or the first segments of posterior or anterior cerebral arteries ipsilateral to the ischaemic infarction was rated as an incomplete COW. Logistic regression was applied to evaluate an association with the patients' modified Rankin scale (mRS) at 90 days after stroke RESULTS: An incomplete ipsilateral COW was not predictive of the patients' mRS at 90 days after stroke. Significant associations were shown for the patients' baseline National Institutes of Health Stroke Scale (NIHSS), age and reperfusion status. The effect size suggests that a significant association of an incomplete COW with the mRS at 90 days may be obtained in cohorts of more than 3000 patients.

Conclusions: Compared with the established predictors NIHSS, age and reperfusion status, an incomplete COW is not associated with functional outcome after endovascular therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/svn-2020-000491DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8258040PMC
June 2021

Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults.

Nat Commun 2020 09 22;11(1):4796. Epub 2020 Sep 22.

Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.

Cortical thickness, surface area and volumes vary with age and cognitive function, and in neurological and psychiatric diseases. Here we report heritability, genetic correlations and genome-wide associations of these cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprises 22,824 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank. We identify genetic heterogeneity between cortical measures and brain regions, and 160 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There is enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-18367-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7508833PMC
September 2020

Association of common genetic variants with brain microbleeds: A genome-wide association study.

Neurology 2020 12 10;95(24):e3331-e3343. Epub 2020 Sep 10.

From the Departments of Epidemiology (M.J.K., H.H.H.A., D.V., S.J.v.d.L., P.Y., M.W.V., N.A., C.M.v.D., M.A.I.), Radiology and Nuclear Medicine (H.H.H.A., P.Y., A.v.d.L., M.W.V.), and Clinical Genetics (H.H.H.A.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Stroke Research Group, Department of Clinical Neurosciences (D.L., M.T., J.L., D.J.T., H.S.M.), University of Cambridge, UK; Department of Neurology (J.R.J.R., C.L.S., J.J.H., A.S.B., C.D., S. Seshadri), Boston University School of Medicine; The Framingham Heart Study (J.R.J.R., C.L.S., J.J.H., A.S.B., S. Seshadri), MA; Department of Biostatistics (A.V.S.), University of Michigan, Ann Arbor; Icelandic Heart Association (A.V.S., S. Sigurdsson, V.G.), Kopavogur, Iceland; Brown Foundation Institute of Molecular Medicine, McGovern Medical School (M.F.), and Human Genetics Center, School of Public Health (M.F.), University of Texas Health Science Center at Houston; Clinical Division of Neurogeriatrics, Department of Neurology (E.H., L.P., R.S.), Institute for Medical Informatics, Statistics and Documentation (E.H.), and Gottfried Schatz Research Center, Department of Molecular Biology and Biochemistry (Y.S., H.S.), Medical University of Graz, Austria; Center of Cerebrovascular Diseases, Department of Neurology (J.L.), West China Hospital, Sichuan University, Chengdu; Stroke Research Centre, Queen Square Institute of Neurology (I.C.H., D.W., H.H., D.J.W.), University College London, UK; Department of Neurosurgery (I.C.H.), Klinikum rechts der Isar, University of Munich, Germany; Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology (M.L., D.C.M.L., M.E.B., I.J.D., J.M.W.), and Centre for Clinical Brain Sciences, Edinburgh Imaging, UK Dementia Research Institute (M.E.B., J.M.W.), University of Edinburgh, UK; Department of Internal Medicine, Section of Gerontology and Geriatrics (S.T.), Department of Cardiology (S.T., J.v.d.G., J.W.J.), Section of Molecular Epidemiology, Biomedical Data Sciences (E.B.v.d.A., M.B., P.E.S.), Leiden Computational Biology Center, Biomedical Data Sciences (E.B.v.d.A.), Department of Radiology (J.v.d.G.), and Einthoven Laboratory for Experimental Vascular Medicine (J.W.J.), Leiden University Medical Center, the Netherlands; Department of Neurology (A.-K.G., N.S.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Memory Aging and Cognition Center (S.H., C.C.), National University Health System, Singapore; Department of Pharmacology (S.H., C.C.) and Saw Swee Hock School of Public Health (S.H.), National University of Singapore and National University Health System, Singapore; Pattern Recognition & Bioinformatics (E.B.v.d.A.), Delft University of Technology, the Netherlands; Department of Biostatistics (S.L., J.J.H., Q.Y., A.S.B.), Boston University School of Public Health, MA; Department of Radiology (C.R.J., K.K.), Mayo Clinic, Rochester, MN; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., S. Seshadri), UT Health San Antonio, TX; Department of Medicine, Division of Geriatrics (B.G.W., T.H.M), and Memory Impairment and Neurodegenerative Dementia (MIND) Center (T.H.M.), University of Mississippi Medical Center, Jackson; Singapore Eye Research Institute (C.Y.C., J.Y.K., T.Y.W.); Department of Neuroradiology (Z.M., J.M.W.), NHS Lothian, Edinburgh; Institute of Cardiovascular and Medical Sciences (D.J.S.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Division of Cerebrovascular Neurology (R.F.G.), Johns Hopkins University, Baltimore, MD; Department of Neuroradiology (A.D.M.), Atkinson Morley Neurosciences Centre, St George's NHS Foundation Trust, London, UK; Department of Neurology (C.D.), University of California at Davis; Nuffield Department of Population Health (C.M.v.D.), University of Oxford, UK; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, Baltimore, MD; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik, Iceland.

Objective: To identify common genetic variants associated with the presence of brain microbleeds (BMBs).

Methods: We performed genome-wide association studies in 11 population-based cohort studies and 3 case-control or case-only stroke cohorts. Genotypes were imputed to the Haplotype Reference Consortium or 1000 Genomes reference panel. BMBs were rated on susceptibility-weighted or T2*-weighted gradient echo MRI sequences, and further classified as lobar or mixed (including strictly deep and infratentorial, possibly with lobar BMB). In a subset, we assessed the effects of ε2 and ε4 alleles on BMB counts. We also related previously identified cerebral small vessel disease variants to BMBs.

Results: BMBs were detected in 3,556 of the 25,862 participants, of which 2,179 were strictly lobar and 1,293 mixed. One locus in the region reached genome-wide significance for its association with BMB (lead rs769449; odds ratio [OR] [95% confidence interval (CI)] 1.33 [1.21-1.45]; = 2.5 × 10). ε4 alleles were associated with strictly lobar (OR [95% CI] 1.34 [1.19-1.50]; = 1.0 × 10) but not with mixed BMB counts (OR [95% CI] 1.04 [0.86-1.25]; = 0.68). ε2 alleles did not show associations with BMB counts. Variants previously related to deep intracerebral hemorrhage and lacunar stroke, and a risk score of cerebral white matter hyperintensity variants, were associated with BMB.

Conclusions: Genetic variants in the region are associated with the presence of BMB, most likely due to the ε4 allele count related to a higher number of strictly lobar BMBs. Genetic predisposition to small vessel disease confers risk of BMB, indicating genetic overlap with other cerebral small vessel disease markers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000010852DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836652PMC
December 2020

Intracranial Pulsatility in Relation to Severity and Progression of Cerebral White Matter Hyperintensities.

Stroke 2020 11 4;51(11):3302-3309. Epub 2020 Sep 4.

Department of Neurology (M.K., E.H., C.E., K.N., S.H., D.P., S.F.-H., S.E., M.H., R.S., T.G.), Medical University of Graz, Austria.

Background And Purpose: Previous studies suggested an association between increased intracranial arterial pulsatility and the severity of microangiopathic white matter hyperintensities (WMH). However, possible confounders such as age and hypertension were seldomly considered and longitudinal data are lacking. We here aimed to explore whether increased middle cerebral artery pulsatility is associated with baseline severity and progression of cerebral small vessel disease-related WMH in elderly individuals.

Methods: The study population consisted of elderly participants from the community-based ASPS (Austrian Stroke Prevention Study). Baseline and follow-up assessment comprised transcranial Doppler sonography, brain magnetic resonance imaging, and clinical/laboratory examination of vascular risk factors. Pulsatility index on transcranial Doppler sonography was averaged from baseline indices of both middle cerebral arteries and was correlated with baseline WMH severity and WMH progression over a median follow-up period of 5 years in uni- and multivariable analyses. WMH severity was graded according to the Fazekas scale, and WMH load was quantified by semiautomated volumetric assessment.

Results: The study cohort comprised 491 participants (mean age: 60.7±6.9 years; female: 48.5%). Pulsatility index was increased in participants with more severe WMH at baseline (<0.001) but was not associated with WMH progression during follow-up (r: 0.097, =0.099). In multivariable analyses, only arterial hypertension remained significantly associated with baseline severity (=0.04) and progression (=0.008) of WMH, although transcranial Doppler sonography pulsatility index was not predictive (>0.1, respectively).

Conclusions: This community-based cohort study of elderly individuals does not support the pulsatility index of the middle cerebral artery on transcranial Doppler sonography as an independent marker of microangiopathic WMH severity and progression over time.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/STROKEAHA.120.030478DOI Listing
November 2020

The impact of folate and vitamin B12 status on cognitive function and brain atrophy in healthy elderly and demented Austrians, a retrospective cohort study.

Aging (Albany NY) 2020 07 24;12(15):15478-15491. Epub 2020 Jul 24.

Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria.

Background: Dementia, and in particular Alzheimer's disease (AD), is a debilitating progressive disease with high prevalence in our society. Vitamin B12 and folate deficiency are potential modifiable risk factors. However, previous studies reported inconsistent results.

Results: The average concentrations of all biochemical markers were within the respective reference ranges. Cross-sectional and longitudinal analyses did not reveal significant associations between biochemical markers and cognitive function, global or regional brain volume, cortical thickness or cortical surface area, neither in controls nor in AD patients.

Conclusions: Variations of direct and indirect markers of B12 and folate status are not associated with cognitive dysfunction and brain atrophy.

Methods: This retrospective study explored the association between biochemical markers of B12 and folate status, cognitive function and MRI-based brain atrophy in cognitive normal elderly (controls) and AD patients. Folate, total and active vitamin B12 and MMA were measured in blood samples from 378 controls and 217 AD patients. Neuropsychiatric tests capturing memory, executive function and visuopractical skills were performed in all participants. Brain atrophy was assessed by MRI in 155 controls and 217 AD patients. In a subset of participants cognitive testing (n=234) and MRI (n=182) was repeated after an average median between 1.25 and 6.25 years.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/aging.103714DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467363PMC
July 2020

Cross-sectional and Longitudinal Assessment of Brain Iron Level in Alzheimer Disease Using 3-T MRI.

Radiology 2020 09 30;296(3):619-626. Epub 2020 Jun 30.

From the Department of Neurology (A.D., L.P., M. Soellradl, M. Sackl, C.T., E.H., C.E., S.R., R.S., C.L.), Institute for Medical Informatics, Statistics and Documentation (E.H.), and Division of Neuroradiology, Vascular, and Interventional Radiology, Department of Radiology (C.E.), Medical University of Graz, Graz, Auenbruggerplatz 22, 8036 Graz, Austria; and Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany (B.G., M.D.).

Background Deep gray matter structures in patients with Alzheimer disease (AD) contain higher brain iron concentrations. However, few studies have included neocortical areas, which are challenging to assess with MRI. Purpose To investigate baseline and change in brain iron levels using MRI at 3 T with R2* relaxation rate mapping in individuals with AD compared with healthy control (HC) participants. Materials and Methods In this prospective study, participants with AD recruited between 2010 and 2016 and age-matched HC participants selected from 2010 to 2014 were evaluated. Of 100 participants with AD, 56 underwent subsequent neuropsychological testing and brain MRI at a mean follow-up of 17 months. All participants underwent 3-T MRI, including R2* mapping corrected for macroscopic B0 field inhomogeneities. Anatomic structures were segmented, and median R2* values were calculated in the neocortex and cortical lobes, basal ganglia (BG), hippocampi, and thalami. Multivariable linear regression analysis was applied to study the difference in R2* levels between groups and the association between longitudinal changes in R2* values and cognition in the AD group. Results A total of 100 participants with AD (mean age, 73 years ± 9 [standard deviation]; 58 women) and 100 age-matched HC participants (mean age, 73 years ± 9; 60 women) were evaluated. Median R2* levels were higher in the AD group than in the HC group in the BG (HC, 29.0 sec; AD, 30.2 sec; = .01) and total neocortex (HC, 17.0 sec; AD, 17.4 sec; < .001) and regionally in the occipital (HC, 19.6 sec; AD, 20.2 sec; = .007) and temporal (HC, 16.4 sec; AD, 18.1 sec; < .001) lobes. R2* values in the temporal lobe were associated with longitudinal changes in Consortium to Establish a Registry for Alzheimer's Disease total score (β = -3.23 score/sec, = .003) in participants with AD independent of longitudinal changes in brain volume. Conclusion Iron concentration in the deep gray matter and neocortical regions was higher in patients with Alzheimer disease than in healthy control participants. Change in iron levels over time in the temporal lobe was associated with cognitive decline in individuals with Alzheimer disease. © RSNA, 2020
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.2020192541DOI Listing
September 2020

Minor Structural Differences in the Cervical Spine Between Patients With Cervical Dystonia and Age-Matched Healthy Controls.

Front Neurol 2020 29;11:472. Epub 2020 May 29.

Department of Neurology, Medical University of Graz, Graz, Austria.

Cervical dystonia is the most common form of focal dystonia. The frequency and pattern of degenerative changes of the cervical spine in patients with cervical dystonia and their relation to clinical symptoms remain unclear as no direct comparison to healthy controls has been performed yet. Here, we used magnetic resonance imaging (MRI) to investigate (1) whether structural abnormalities of the cervical spine are more common in patients with cervical dystonia compared to age-matched healthy controls, (2) if there are clinical predictors for abnormalities on MRI, and (3) to calculate the inter-rater reliability of the respective radiological scales. Twenty-five consecutive patients with cervical dystonia and 20 age-matched healthy controls were included in the study. MRI scans of the cervical spine were analyzed separately by three experienced raters blinded to clinical information, applying different MRI rating scales. Structural abnormalities were compared between groups for upper, middle, and lower cervical spine segments. The associations between scores differentiating both groups and clinical parameters were assessed in dystonia patients. Additionally, inter-rater reliability of the MRI scales was calculated. Comparing structural abnormalities, we found minor differences in the middle cervical spine, indicated by a higher MRI total score in patients but no significant correlation between clinical parameters and MRI changes. Inter-rater reliability was satisfying for most of the MRI rating scales. Our results do not provide evidence for a role of MRI of the cervical spine in the routine work-up of patients with cervical dystonia in the absence of specific clinical signs or symptoms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fneur.2020.00472DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7272577PMC
May 2020

Common Genetic Variation Indicates Separate Causes for Periventricular and Deep White Matter Hyperintensities.

Stroke 2020 07 10;51(7):2111-2121. Epub 2020 Jun 10.

Department of Psychiatry (C.F.-N.), University of California, San Diego, La Jolla, CA.

Background And Purpose: Periventricular white matter hyperintensities (WMH; PVWMH) and deep WMH (DWMH) are regional classifications of WMH and reflect proposed differences in cause. In the first study, to date, we undertook genome-wide association analyses of DWMH and PVWMH to show that these phenotypes have different genetic underpinnings.

Methods: Participants were aged 45 years and older, free of stroke and dementia. We conducted genome-wide association analyses of PVWMH and DWMH in 26,654 participants from CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology), ENIGMA (Enhancing Neuro-Imaging Genetics Through Meta-Analysis), and the UKB (UK Biobank). Regional correlations were investigated using the genome-wide association analyses -pairwise method. Cross-trait genetic correlations between PVWMH, DWMH, stroke, and dementia were estimated using LDSC.

Results: In the discovery and replication analysis, for PVWMH only, we found associations on chromosomes 2 (), 10q23.1 (), and 10q24.33 ( In the much larger combined meta-analysis of all cohorts, we identified ten significant regions for PVWMH: chromosomes 2 (3 regions), 6, 7, 10 (2 regions), 13, 16, and 17q23.1. New loci of interest include 7q36.1 () and 16q24.2. In both the discovery/replication and combined analysis, we found genome-wide significant associations for the 17q25.1 locus for both DWMH and PVWMH. Using gene-based association analysis, 19 genes across all regions were identified for PVWMH only, including the new genes: (2q32.1), (3q27.1), (5q27.1), and (22q13.1). Thirteen genes in the 17q25.1 locus were significant for both phenotypes. More extensive genetic correlations were observed for PVWMH with small vessel ischemic stroke. There were no associations with dementia for either phenotype.

Conclusions: Our study confirms these phenotypes have distinct and also shared genetic architectures. Genetic analyses indicated PVWMH was more associated with ischemic stroke whilst DWMH loci were implicated in vascular, astrocyte, and neuronal function. Our study confirms these phenotypes are distinct neuroimaging classifications and identifies new candidate genes associated with PVWMH only.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/STROKEAHA.119.027544DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7365038PMC
July 2020

Global and Regional Development of the Human Cerebral Cortex: Molecular Architecture and Occupational Aptitudes.

Cereb Cortex 2020 06;30(7):4121-4139

Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04109 Leipzig, Germany.

We have carried out meta-analyses of genome-wide association studies (GWAS) (n = 23 784) of the first two principal components (PCs) that group together cortical regions with shared variance in their surface area. PC1 (global) captured variations of most regions, whereas PC2 (visual) was specific to the primary and secondary visual cortices. We identified a total of 18 (PC1) and 17 (PC2) independent loci, which were replicated in another 25 746 individuals. The loci of the global PC1 included those associated previously with intracranial volume and/or general cognitive function, such as MAPT and IGF2BP1. The loci of the visual PC2 included DAAM1, a key player in the planar-cell-polarity pathway. We then tested associations with occupational aptitudes and, as predicted, found that the global PC1 was associated with General Learning Ability, and the visual PC2 was associated with the Form Perception aptitude. These results suggest that interindividual variations in global and regional development of the human cerebral cortex (and its molecular architecture) cascade-albeit in a very limited manner-to behaviors as complex as the choice of one's occupation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhaa035DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7947185PMC
June 2020

The genetic architecture of the human cerebral cortex.

Science 2020 03;367(6484)

The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aay6690DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7295264PMC
March 2020

Simple MRI score aids prediction of dementia in cerebral small vessel disease.

Neurology 2020 03 2;94(12):e1294-e1302. Epub 2020 Mar 2.

From the Stroke Research Group (A.A.A.O., H.S.M.), Clinical Neurosciences, University of Cambridge; MRC Biostatistics Unit (J.M.S.W.), Institute of Public Health, Cambridge; Institute of Health and Society (J.M.S.W.), Newcastle University, UK; Department of Neurology (A.M.T., E.M.C.v.L., F.-E.d.L.), Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Centre for Medical Neuroscience, Nijmegen, the Netherlands; Division of Neurogeriatrics (M.K., E.H., R.S.), Department of Neurology, Medical University of Graz; Institute for Medical Informatics (E.H.), Statistics and Documentation, Medical University of Graz, Austria; and Department of Psychology (R.G.M.), King's College, Institute of Psychiatry, Psychology and Neuroscience, London, UK.

Objective: To determine whether a simple small vessel disease (SVD) score, which uses information available on rapid visual assessment of clinical MRI scans, predicts risk of cognitive decline and dementia, above that provided by simple clinical measures.

Methods: Three prospective longitudinal cohort studies (SCANS [St George's Cognition and Neuroimaging in Stroke], RUN DMC [Radboud University Nijmegen Diffusion Imaging and Magnetic Resonance Imaging Cohort], and the ASPS [Austrian Stroke Prevention Study]), which covered a range of SVD severity from mild and asymptomatic to severe and symptomatic, were included. In all studies, MRI was performed at baseline, cognitive tests repeated during follow-up, and progression to dementia recorded prospectively. Outcome measures were cognitive decline and onset of dementia during follow-up. We determined whether the SVD score predicted risk of cognitive decline and future dementia. We also determined whether using the score to select a group of patients with more severe disease would reduce sample sizes for clinical intervention trials.

Results: In a pooled analysis of all 3 cohorts, the score improved prediction of dementia (area under the curve [AUC], 0.85; 95% confidence interval [CI], 0.81-0.89) compared with that from clinical risk factors alone (AUC, 0.76; 95% CI, 0.71-0.81). Predictive performance was higher in patients with more severe SVD. Power calculations showed selecting patients with a higher score reduced sample sizes required for hypothetical clinical trials by 40%-66% depending on the outcome measure used.

Conclusions: A simple SVD score, easily obtainable from clinical MRI scans and therefore applicable in routine clinical practice, aided prediction of future dementia risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000009141DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274929PMC
March 2020

Serum neurofilament light levels in normal aging and their association with morphologic brain changes.

Nat Commun 2020 02 10;11(1):812. Epub 2020 Feb 10.

Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland.

Neurofilament light (NfL) protein is a marker of neuro-axonal damage and can be measured not only in cerebrospinal fluid but also in serum, which allows for repeated assessments. There is still limited knowledge regarding the association of serum NfL (sNfL) with age and subclinical morphologic brain changes and their dynamics in the normal population. We measured sNfL by a single molecule array (Simoa) assay in 335 individuals participating in a population-based cohort study and after a mean follow-up time of 5.9 years (n = 103). Detailed clinical examination, cognitive testing and 3T brain MRI were performed to assess subclinical brain damage. We show that rising and more variable sNfL in individuals >60 years indicate an acceleration of neuronal injury at higher age, which may be driven by subclinical comorbid pathologies. This is supported by a close association of sNfL with brain volume changes in a cross-sectional and especially longitudinal manner.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-14612-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010701PMC
February 2020

Associations of autozygosity with a broad range of human phenotypes.

Nat Commun 2019 10 31;10(1):4957. Epub 2019 Oct 31.

Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands.

In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (F) for >1.4 million individuals, we show that F is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: F equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44-66%] in the odds of having children. Finally, the effects of F are confirmed within full-sibling pairs, where the variation in F is independent of all environmental confounding.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-12283-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823371PMC
October 2019

Genetic architecture of subcortical brain structures in 38,851 individuals.

Nat Genet 2019 11 21;51(11):1624-1636. Epub 2019 Oct 21.

Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.

Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0511-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055269PMC
November 2019

Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels.

Nat Genet 2019 10 2;51(10):1459-1474. Epub 2019 Oct 2.

Department of Neurobiology, Care Sciences and Society, Division of Family Medicine and Primary Care, Karolinska Institutet, Stockholm, Sweden.

Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0504-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858555PMC
October 2019

A genome-wide association study identifies genetic loci associated with specific lobar brain volumes.

Commun Biol 2019 2;2:285. Epub 2019 Aug 2.

17Department of Biomedical Data Sciences, Statistical Genetics, Leiden University Medical Center, Leiden, 2333ZA the Netherlands.

Brain lobar volumes are heritable but genetic studies are limited. We performed genome-wide association studies of frontal, occipital, parietal and temporal lobe volumes in 16,016 individuals, and replicated our findings in 8,789 individuals. We identified six genetic loci associated with specific lobar volumes independent of intracranial volume. Two loci, associated with occipital (6q22.32) and temporal lobe volume (12q14.3), were previously reported to associate with intracranial and hippocampal volume, respectively. We identified four loci previously unknown to affect brain volumes: 3q24 for parietal lobe volume, and 1q22, 4p16.3 and 14q23.1 for occipital lobe volume. The associated variants were located in regions enriched for histone modifications ( and ), or close to genes causing Mendelian brain-related diseases ( and ). No genetic overlap between lobar volumes and neurological or psychiatric diseases was observed. Our findings reveal part of the complex genetics underlying brain development and suggest a role for regulatory regions in determining brain volumes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s42003-019-0537-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6677735PMC
April 2020

A catalog of genetic loci associated with kidney function from analyses of a million individuals.

Nat Genet 2019 06 31;51(6):957-972. Epub 2019 May 31.

Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clincial Sciences in Malmö, Lund University, Malmö, Sweden.

Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0407-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698888PMC
June 2019

Author Correction: Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function.

Nat Commun 2019 May 1;10(1):2068. Epub 2019 May 1.

Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.

Christina M. Lill, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this article. This has now been corrected in both the PDF and HTML versions of the article.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-10160-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494826PMC
May 2019

Association of variants in HTRA1 and NOTCH3 with MRI-defined extremes of cerebral small vessel disease in older subjects.

Brain 2019 04;142(4):1009-1023

The University of Texas Health Science Center at Houston, Houston, TX, USA.

We report a composite extreme phenotype design using distribution of white matter hyperintensities and brain infarcts in a population-based cohort of older persons for gene-mapping of cerebral small vessel disease. We demonstrate its application in the 3C-Dijon whole exome sequencing (WES) study (n = 1924, nWESextremes = 512), with both single variant and gene-based association tests. We used other population-based cohort studies participating in the CHARGE consortium for replication, using whole exome sequencing (nWES = 2,868, nWESextremes = 956) and genome-wide genotypes (nGW = 9924, nGWextremes = 3308). We restricted our study to candidate genes known to harbour mutations for Mendelian small vessel disease: NOTCH3, HTRA1, COL4A1, COL4A2 and TREX1. We identified significant associations of a common intronic variant in HTRA1, rs2293871 using single variant association testing (Pdiscovery = 8.21 × 10-5, Preplication = 5.25 × 10-3, Pcombined = 4.72 × 10-5) and of NOTCH3 using gene-based tests (Pdiscovery = 1.61 × 10-2, Preplication = 3.99 × 10-2, Pcombined = 5.31 × 10-3). Follow-up analysis identified significant association of rs2293871 with small vessel ischaemic stroke, and two blood expression quantitative trait loci of HTRA1 in linkage disequilibrium. Additionally, we identified two participants in the 3C-Dijon cohort (0.4%) carrying heterozygote genotypes at known pathogenic variants for familial small vessel disease within NOTCH3 and HTRA1. In conclusion, our proof-of-concept study provides strong evidence that using a novel composite MRI-derived phenotype for extremes of small vessel disease can facilitate the identification of genetic variants underlying small vessel disease, both common variants and those with rare and low frequency. The findings demonstrate shared mechanisms and a continuum between genes underlying Mendelian small vessel disease and those contributing to the common, multifactorial form of the disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awz024DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6439324PMC
April 2019

Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing.

Nat Genet 2019 03 28;51(3):414-430. Epub 2019 Feb 28.

Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya, Barcelona, Spain.

Risk for late-onset Alzheimer's disease (LOAD), the most prevalent dementia, is partially driven by genetics. To identify LOAD risk loci, we performed a large genome-wide association meta-analysis of clinically diagnosed LOAD (94,437 individuals). We confirm 20 previous LOAD risk loci and identify five new genome-wide loci (IQCK, ACE, ADAM10, ADAMTS1, and WWOX), two of which (ADAM10, ACE) were identified in a recent genome-wide association (GWAS)-by-familial-proxy of Alzheimer's or dementia. Fine-mapping of the human leukocyte antigen (HLA) region confirms the neurological and immune-mediated disease haplotype HLA-DR15 as a risk factor for LOAD. Pathway analysis implicates immunity, lipid metabolism, tau binding proteins, and amyloid precursor protein (APP) metabolism, showing that genetic variants affecting APP and Aβ processing are associated not only with early-onset autosomal dominant Alzheimer's disease but also with LOAD. Analyses of risk genes and pathways show enrichment for rare variants (P = 1.32 × 10), indicating that additional rare variants remain to be identified. We also identify important genetic correlations between LOAD and traits such as family history of dementia and education.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0358-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6463297PMC
March 2019
-->