Publications by authors named "Edilio Lázaro Lázaro"

4 Publications

  • Page 1 of 1

Thermodynamics, static properties and transport behaviour of fluids with competing interactions.

J Phys Condens Matter 2022 Jan 13. Epub 2022 Jan 13.

Science and Engineering Division, University of Guanajuato - Leon Campus, Loma del Bosque 103, Leon de los Aldama, Guanajuato, 37150, MEXICO.

Competing interaction fluids have become ideal model systems to study a large number of phenomena, for example, the formation of intermediate range order structures, condensed phases not seen in fluids driven by purely attractive or repulsive forces, the onset of particle aggregation under in- and out-of-equilibrium conditions, which results in the birth of reversible and irreversible aggregates or clusters whose topology and morphology depend additionally on the thermodynamic constrictions, and a particle dynamics that has a strong influence on the transport behaviour and rheological properties of the fluid. In this contribution, we study a system of particles interacting through a potential composed by a continuous succession of a short-ranged square-well, an intermediate-ranged square-shoulder and a long-ranged square-well. This potential model is chosen to systematically analyse the contribution of every component of the interaction potential on the phase behaviour, the microstructure, the morphology of the resulting aggregates and the transport phenomena of fluids described by competing interactions. Our results indicate that the inclusion of a barrier and a second well leads to new and interesting effects, which in addition result in variations of the physical properties associated to the competition among interactions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ac4b29DOI Listing
January 2022

Glassy dynamics in asymmetric binary mixtures of hard spheres.

Phys Rev E 2019 Apr;99(4-1):042603

Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft-und Raumfahrt (DLR), Linder Höhe 51170, Köln, Germany.

We perform a systematic and detailed study of the glass transition in highly asymmetric binary mixtures of colloidal hard spheres, combining differential dynamic microscopy experiments, event-driven molecular dynamics simulations, and theoretical calculations, exploring the whole state diagram and determining the self-dynamics and collective dynamics of both species. Two distinct glassy states involving different dynamical arrest transitions are consistently described, namely, a double glass with the simultaneous arrest of the self-dynamics and collective dynamics of both species, and a single glass of large particles in which the self-dynamics of the small species remains ergodic. In the single-glass scenario, spatial modulations in the collective dynamics of both species occur due to the structure of the large spheres, a feature not observed in the double-glass domain. The theoretical results, obtained within the self-consistent generalized Langevin equation formalism, are in agreement with both simulations and experimental data, thus providing a stringent validation of this theoretical framework in the description of dynamical arrest in highly asymmetric mixtures. Our findings are summarized in a state diagram that classifies the various amorphous states of highly asymmetric mixtures by their dynamical arrest mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.99.042603DOI Listing
April 2019

Different routes into the glass state for soft thermo-sensitive colloids.

Soft Matter 2018 Jun;14(24):5008-5018

División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Mexico.

We report an experimental and theoretical investigation of glass formation in soft thermo-sensitive colloids following two different routes: a gradual increase of the particle number density at constant temperature and an increase of the radius in a fixed volume at constant particle number density. Confocal microscopy experiments and the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory consistently show that the two routes lead to a dynamically comparable state at sufficiently long aging times. However, experiments reveal the presence of moderate but persistent structural differences. Successive cycles of radius decrease and increase lead instead to a reproducible glass state, indicating a suitable route to obtain rejuvenation without using shear fields.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8sm00285aDOI Listing
June 2018

Non-equilibrium dynamics of glass-forming liquid mixtures.

J Chem Phys 2014 Jun;140(23):234501

Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, SLP, Mexico.

The non-equilibrium self-consistent generalized Langevin equation theory of irreversible processes in glass-forming liquids [P. Ramírez-González and M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010)] is extended here to multi-component systems. The resulting theory describes the statistical properties of the instantaneous local particle concentration profiles nα(r, t) of species α in terms of the coupled time-evolution equations for the mean value n̄α(r, t) and for the covariance σ(αβ)(r, r'; t) ≡ δn(α)(r, t)δn(β)(r', t) of the fluctuations δn(α)(r, t) = n(α)(r, t) - n̄α(r, t). As in the monocomponent case, these two coarse-grained equations involve a local mobility function bα(r, t) for each species, written in terms of the memory function of the two-time correlation function C(αβ)(r, r'; t, t') ≡ δn(α)(r, t)δn(β)(r', t'). If the system is constrained to remain spatially uniform and subjected to a non-equilibrium preparation protocol described by a given temperature and composition change program T(t) and n̄α(r, t), these equations predict the irreversible structural relaxation of the partial static structure factors Sαβ(k; t) and of the (collective and self) intermediate scattering functions Fαβ(k, τ; t) and F(αβ)(S)(k, τ; t). We illustrate the applicability of the resulting theory with two examples involving simple model mixtures subjected to an instantaneous temperature quench: an electroneutral binary mixture of equally sized and oppositely charged hard-spheres, and a binary mixture of soft-spheres of moderate size-asymmetry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4882356DOI Listing
June 2014
-->