Publications by authors named "E Wahyu Saptomo"

23 Publications

  • Page 1 of 1

Mitogenomics of macaques (Macaca) across Wallace's Line in the context of modern human dispersals.

J Hum Evol 2020 09 8;146:102852. Epub 2020 Aug 8.

Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany.

Wallace's Line demarcates a biogeographical boundary between the Indomalaya and Australasian ecoregions. Most placental mammalian genera, for example, occur to the west of this line, whereas most marsupial genera occur to the east. However, macaque monkeys are unusual because they naturally occur on both western and eastern sides. To further explore this anomalous distribution, we analyzed 222 mitochondrial genomes from ∼20 macaque species, including new genomes from 60 specimens. These comprise a population sampling of most Sulawesi macaques, Macaca fascicularis (long-tailed macaques) specimens that were collected by Alfred R. Wallace and specimens that were recovered during archaeological excavations at Liang Bua, a cave on the Indonesian island of Flores. In M. fascicularis, three mitochondrial lineages span the southernmost portion of Wallace's Line between Bali and Lombok, and divergences within these lineages are contemporaneous with, and possibly mediated by, past dispersals of modern human populations. Near the central portion of Wallace's Line between Borneo and Sulawesi, a more ancient dispersal of macaques from mainland Asia to Sulawesi preceded modern human colonization, which was followed by rapid dispersal of matrilines and was subsequently influenced by recent interspecies hybridization. In contrast to previous studies, we find no strong signal of recombination in most macaque mitochondrial genomes. These findings further characterize macaque evolution before and after modern human dispersal throughout Southeast Asia and point to possible effects on biodiversity of ancient human cultural diasporas.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhevol.2020.102852DOI Listing
September 2020

Combined organic biomarker and use-wear analyses of stone artefacts from Liang Bua, Flores, Indonesia.

Sci Rep 2019 11 26;9(1):17553. Epub 2019 Nov 26.

Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia.

Organic biomarker and lithic use-wear analyses of archaeological implements manufactured and/or used by hominins in the past offers a means of assessing how prehistoric peoples utilised natural resources. Currently, most studies focus on one of these techniques, rather than using both in sequence. This study aims to assess the potential of combining both methods to analyse stone artefacts, using a set of 69 stones excavated from the cave site of Liang Bua (Flores, Indonesia). Prior to chemical analysis, an initial inspection of the artefacts revealed potential use-wear traces but no visible residues. Gas chromatography mass spectrometry (GC-MS) analysis, including the targeting of 86 lipids, terpenes, terpenoids, alkanes and their analogues, found compounds with plant or animal origin on 27 of the 69 stones. The artefacts were subsequently cleaned, and use-wear analysis identified traces of use on 43 artefacts. Use-wear analysis confirmed traces of use on 23 of the 27 artefacts with potential use-residues that were determined by GC-MS. The GC-MS results were broadly consistent with the functional classes identified in the later use-wear analysis. This inclusive approach for stone artefact analysis strengthens the identifications made through multiple lines of enquiry. There remain conflicts and uncertainties in specific cases, suggesting the need for further refinement and analyses of the relationships between use-wear and residues.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-53782-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879511PMC
November 2019

Palaeolithic cave art in Borneo.

Nature 2018 12 7;564(7735):254-257. Epub 2018 Nov 7.

Australian Synchrotron, Clayton, Victoria, Australia.

Figurative cave paintings from the Indonesian island of Sulawesi date to at least 35,000 years ago (ka) and hand-stencil art from the same region has a minimum date of 40 ka. Here we show that similar rock art was created during essentially the same time period on the adjacent island of Borneo. Uranium-series analysis of calcium carbonate deposits that overlie a large reddish-orange figurative painting of an animal at Lubang Jeriji Saléh-a limestone cave in East Kalimantan, Indonesian Borneo-yielded a minimum date of 40 ka, which to our knowledge is currently the oldest date for figurative artwork from anywhere in the world. In addition, two reddish-orange-coloured hand stencils from the same site each yielded a minimum uranium-series date of 37.2 ka, and a third hand stencil of the same hue has a maximum date of 51.8 ka. We also obtained uranium-series determinations for cave art motifs from Lubang Jeriji Saléh and three other East Kalimantan karst caves, which enable us to constrain the chronology of a distinct younger phase of Pleistocene rock art production in this region. Dark-purple hand stencils, some of which are decorated with intricate motifs, date to about 21-20 ka and a rare Pleistocene depiction of a human figure-also coloured dark purple-has a minimum date of 13.6 ka. Our findings show that cave painting appeared in eastern Borneo between 52 and 40 ka and that a new style of parietal art arose during the Last Glacial Maximum. It is now evident that a major Palaeolithic cave art province existed in the eastern extremity of continental Eurasia and in adjacent Wallacea from at least 40 ka until the Last Glacial Maximum, which has implications for understanding how early rock art traditions emerged, developed and spread in Pleistocene Southeast Asia and further afield.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-018-0679-9DOI Listing
December 2018

A reassessment of the early archaeological record at Leang Burung 2, a Late Pleistocene rock-shelter site on the Indonesian island of Sulawesi.

PLoS One 2018 11;13(4):e0193025. Epub 2018 Apr 11.

Centre for Archaeological Science, School of Earth & Environmental Sciences, University of Wollongong, Wollongong, New South Wales, Australia.

This paper presents a reassessment of the archaeological record at Leang Burung 2, a key early human occupation site in the Late Pleistocene of Southeast Asia. Excavated originally by Ian Glover in 1975, this limestone rock-shelter in the Maros karsts of Sulawesi, Indonesia, has long held significance in our understanding of early human dispersals into 'Wallacea', the vast zone of oceanic islands between continental Asia and Australia. We present new stratigraphic information and dating evidence from Leang Burung 2 collected during the course of our excavations at this site in 2007 and 2011-13. Our findings suggest that the classic Late Pleistocene modern human occupation sequence identified previously at Leang Burung 2, and proposed to span around 31,000 to 19,000 conventional 14C years BP (~35-24 ka cal BP), may actually represent an amalgam of reworked archaeological materials. Sources for cultural materials of mixed ages comprise breccias from the rear wall of the rock-shelter-remnants of older, eroded deposits dated to 35-23 ka cal BP-and cultural remains of early Holocene antiquity. Below the upper levels affected by the mass loss of Late Pleistocene deposits, our deep-trench excavations uncovered evidence for an earlier hominin presence at the site. These findings include fossils of now-extinct proboscideans and other 'megafauna' in stratified context, as well as a cobble-based stone artifact technology comparable to that produced by late Middle Pleistocene hominins elsewhere on Sulawesi.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193025PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5894965PMC
July 2018

An early modern human presence in Sumatra 73,000-63,000 years ago.

Nature 2017 08 9;548(7667):322-325. Epub 2017 Aug 9.

Indonesian Centre for Archaeology, Jl. Raya Condet Pejaten No. 4, Jakarta 12001, Indonesia.

Genetic evidence for anatomically modern humans (AMH) out of Africa before 75 thousand years ago (ka) and in island southeast Asia (ISEA) before 60 ka (93-61 ka) predates accepted archaeological records of occupation in the region. Claims that AMH arrived in ISEA before 60 ka (ref. 4) have been supported only by equivocal or non-skeletal evidence. AMH evidence from this period is rare and lacks robust chronologies owing to a lack of direct dating applications, poor preservation and/or excavation strategies and questionable taxonomic identifications. Lida Ajer is a Sumatran Pleistocene cave with a rich rainforest fauna associated with fossil human teeth. The importance of the site is unclear owing to unsupported taxonomic identification of these fossils and uncertainties regarding the age of the deposit, therefore it is rarely considered in models of human dispersal. Here we reinvestigate Lida Ajer to identify the teeth confidently and establish a robust chronology using an integrated dating approach. Using enamel-dentine junction morphology, enamel thickness and comparative morphology, we show that the teeth are unequivocally AMH. Luminescence and uranium-series techniques applied to bone-bearing sediments and speleothems, and coupled uranium-series and electron spin resonance dating of mammalian teeth, place modern humans in Sumatra between 73 and 63 ka. This age is consistent with biostratigraphic estimations, palaeoclimate and sea-level reconstructions, and genetic evidence for a pre-60 ka arrival of AMH into ISEA. Lida Ajer represents, to our knowledge, the earliest evidence of rainforest occupation by AMH, and underscores the importance of reassessing the timing and environmental context of the dispersal of modern humans out of Africa.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature23452DOI Listing
August 2017

Early human symbolic behavior in the Late Pleistocene of Wallacea.

Proc Natl Acad Sci U S A 2017 04 3;114(16):4105-4110. Epub 2017 Apr 3.

Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Brisbane, QLD, Australia 4111.

Wallacea, the zone of oceanic islands separating the continental regions of Southeast Asia and Australia, has yielded sparse evidence for the symbolic culture of early modern humans. Here we report evidence for symbolic activity 30,000-22,000 y ago at Leang Bulu Bettue, a cave and rock-shelter site on the Wallacean island of Sulawesi. We describe hitherto undocumented practices of personal ornamentation and portable art, alongside evidence for pigment processing and use in deposits that are the same age as dated rock art in the surrounding karst region. Previously, assemblages of multiple and diverse types of Pleistocene "symbolic" artifacts were entirely unknown from this region. The Leang Bulu Bettue assemblage provides insight into the complexity and diversification of modern human culture during a key period in the global dispersal of our species. It also shows that early inhabitants of Sulawesi fashioned ornaments from body parts of endemic animals, suggesting modern humans integrated exotic faunas and other novel resources into their symbolic world as they colonized the biogeographically unique regions southeast of continental Eurasia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1619013114DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5402422PMC
April 2017

Revised stratigraphy and chronology for Homo floresiensis at Liang Bua in Indonesia.

Nature 2016 Apr 30;532(7599):366-9. Epub 2016 Mar 30.

Centre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia.

Homo floresiensis, a primitive hominin species discovered in Late Pleistocene sediments at Liang Bua (Flores, Indonesia), has generated wide interest and scientific debate. A major reason this taxon is controversial is because the H. floresiensis-bearing deposits, which include associated stone artefacts and remains of other extinct endemic fauna, were dated to between about 95 and 12 thousand calendar years (kyr) ago. These ages suggested that H. floresiensis survived until long after modern humans reached Australia by ~50 kyr ago. Here we report new stratigraphic and chronological evidence from Liang Bua that does not support the ages inferred previously for the H. floresiensis holotype (LB1), ~18 thousand calibrated radiocarbon years before present (kyr cal. BP), or the time of last appearance of this species (about 17 or 13-11 kyr cal. BP). Instead, the skeletal remains of H. floresiensis and the deposits containing them are dated to between about 100 and 60 kyr ago, whereas stone artefacts attributable to this species range from about 190 to 50 kyr in age. Whether H. floresiensis survived after 50 kyr ago--potentially encountering modern humans on Flores or other hominins dispersing through southeast Asia, such as Denisovans--is an open question.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature17179DOI Listing
April 2016

Unique Dental Morphology of Homo floresiensis and Its Evolutionary Implications.

PLoS One 2015 18;10(11):e0141614. Epub 2015 Nov 18.

Centre for Archaeological Science, University of Wollongong, Wollongong, Australia.

Homo floresiensis is an extinct, diminutive hominin species discovered in the Late Pleistocene deposits of Liang Bua cave, Flores, eastern Indonesia. The nature and evolutionary origins of H. floresiensis' unique physical characters have been intensively debated. Based on extensive comparisons using linear metric analyses, crown contour analyses, and other trait-by-trait morphological comparisons, we report here that the dental remains from multiple individuals indicate that H. floresiensis had primitive canine-premolar and advanced molar morphologies, a combination of dental traits unknown in any other hominin species. The primitive aspects are comparable to H. erectus from the Early Pleistocene, whereas some of the molar morphologies are more progressive even compared to those of modern humans. This evidence contradicts the earlier claim of an entirely modern human-like dental morphology of H. floresiensis, while at the same time does not support the hypothesis that H. floresiensis originated from a much older H. habilis or Australopithecus-like small-brained hominin species currently unknown in the Asian fossil record. These results are however consistent with the alternative hypothesis that H. floresiensis derived from an earlier Asian Homo erectus population and experienced substantial body and brain size dwarfism in an isolated insular setting. The dentition of H. floresiensis is not a simple, scaled-down version of earlier hominins.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141614PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4651360PMC
June 2016

Pleistocene cave art from Sulawesi, Indonesia.

Nature 2014 Oct;514(7521):223-7

1] Wollongong Isotope Geochronology Laboratory, University of Wollongong, Wollongong, New South Wales 2522, Australia [2] GeoQuEST Research Centre, University of Wollongong, Wollongong, New South Wales 2522, Australia.

Archaeologists have long been puzzled by the appearance in Europe ∼40-35 thousand years (kyr) ago of a rich corpus of sophisticated artworks, including parietal art (that is, paintings, drawings and engravings on immobile rock surfaces) and portable art (for example, carved figurines), and the absence or scarcity of equivalent, well-dated evidence elsewhere, especially along early human migration routes in South Asia and the Far East, including Wallacea and Australia, where modern humans (Homo sapiens) were established by 50 kyr ago. Here, using uranium-series dating of coralloid speleothems directly associated with 12 human hand stencils and two figurative animal depictions from seven cave sites in the Maros karsts of Sulawesi, we show that rock art traditions on this Indonesian island are at least compatible in age with the oldest European art. The earliest dated image from Maros, with a minimum age of 39.9 kyr, is now the oldest known hand stencil in the world. In addition, a painting of a babirusa ('pig-deer') made at least 35.4 kyr ago is among the earliest dated figurative depictions worldwide, if not the earliest one. Among the implications, it can now be demonstrated that humans were producing rock art by ∼40 kyr ago at opposite ends of the Pleistocene Eurasian world.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature13422DOI Listing
October 2014

New wrist bones of Homo floresiensis from Liang Bua (Flores, Indonesia).

J Hum Evol 2013 Feb 4;64(2):109-29. Epub 2013 Jan 4.

Department of Anatomical Sciences, Stony Brook University, Health Sciences Center T-8 040, Stony Brook, NY 11794-8081, USA.

The carpals from the Homo floresiensis type specimen (LB1) lack features that compose the shared, derived complex of the radial side of the wrist in Neandertals and modern humans. This paper comprises a description and three-dimensional morphometric analysis of new carpals from at least one other individual at Liang Bua attributed to H. floresiensis: a right capitate and two hamates. The new capitate is smaller than that of LB1 but is nearly identical in morphology. As with capitates from extant apes, species of Australopithecus, and LB1, the newly described capitate displays a deeply-excavated nonarticular area along its radial aspect, a scaphoid facet that extends into a J-hook articulation on the neck, and a more radially-oriented second metacarpal facet; it also lacks an enlarged palmarly-positioned trapezoid facet. Because there is no accommodation for the derived, palmarly blocky trapezoid that characterizes Homo sapiens and Neandertals, this individual most likely had a plesiomorphically wedge-shaped trapezoid (like LB1). Morphometric analyses confirm the close similarity of the new capitate and that of LB1, and are consistent with previous findings of an overall primitive articular geometry. In general, hamate morphology is more conserved across hominins, and the H. floresiensis specimens fall at the far edge of the range of variation for H. sapiens in a number of metrics. However, the hamate of H. floresiensis is exceptionally small and exhibits a relatively long, stout hamulus lacking the oval-shaped cross-section characteristic of human and Neandertal hamuli (variably present in australopiths). Documentation of a second individual with primitive carpal anatomy from Liang Bua, along with further analysis of trapezoid scaling relative to the capitate in LB1, refutes claims that the wrist of the type specimen represents a modern human with pathology. In total, the carpal anatomy of H. floresiensis supports the hypothesis that the lineage leading to the evolution of this species originated prior to the cladogenetic event that gave rise to modern humans and Neandertals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhevol.2012.10.003DOI Listing
February 2013

Craniofacial morphology of Homo floresiensis: description, taxonomic affinities, and evolutionary implication.

J Hum Evol 2011 Dec 28;61(6):644-82. Epub 2011 Oct 28.

Department of Anthropology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba-shi, Ibaraki Prefecture Japan.

This paper describes in detail the external morphology of LB1/1, the nearly complete and only known cranium of Homo floresiensis. Comparisons were made with a large sample of early groups of the genus Homo to assess primitive, derived, and unique craniofacial traits of LB1 and discuss its evolution. Principal cranial shape differences between H. floresiensis and Homo sapiens are also explored metrically. The LB1 specimen exhibits a marked reductive trend in its facial skeleton, which is comparable to the H. sapiens condition and is probably associated with reduced masticatory stresses. However, LB1 is craniometrically different from H. sapiens showing an extremely small overall cranial size, and the combination of a primitive low and anteriorly narrow vault shape, a relatively prognathic face, a rounded oval foramen that is greatly separated anteriorly from the carotid canal/jugular foramen, and a unique, tall orbital shape. Whereas the neurocranium of LB1 is as small as that of some Homo habilis specimens, it exhibits laterally expanded parietals, a weak suprameatal crest, a moderately flexed occipital, a marked facial reduction, and many other derived features that characterize post-habilis Homo. Other craniofacial characteristics of LB1 include, for example, a relatively narrow frontal squama with flattened right and left sides, a marked frontal keel, posteriorly divergent temporal lines, a posteriorly flexed anteromedial corner of the mandibular fossa, a bulbous lateral end of the supraorbital torus, and a forward protruding maxillary body with a distinct infraorbital sulcus. LB1 is most similar to early Javanese Homo erectus from Sangiran and Trinil in these and other aspects. We conclude that the craniofacial morphology of LB1 is consistent with the hypothesis that H. floresiensis evolved from early Javanese H. erectus with dramatic island dwarfism. However, further field discoveries of early hominin skeletal remains from Flores and detailed analyses of the finds are needed to understand the evolutionary history of this endemic hominin species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhevol.2011.08.008DOI Listing
December 2011

Preface: research at Liang Bua, Flores, Indonesia.

J Hum Evol 2009 Nov 5;57(5):437-49. Epub 2009 Sep 5.

GeoQuEST Research Centre, University of Wollongong, NSW, Australia.

Excavations at Liang Bua, Flores, Indonesia, have yielded evidence for an endemic human species, Homo floresiensis, a population that occupied the cave between approximately 95-17ka. This discovery has major implications for early hominin evolution and dispersal in Africa and Asia, attracting worldwide interest. This preface describes the rationale for the excavations in historical, geographical, and wider research contexts, as well as the methods used. It also introduces the other papers on aspects of Liang Bua research that feature in this edition of the Journal of Human Evolution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhevol.2009.07.003DOI Listing
November 2009

Homo floresiensis: a cladistic analysis.

J Hum Evol 2009 Nov 23;57(5):623-39. Epub 2009 Jul 23.

Australian National University, Canberra, ACT, Australia.

The announcement of a new species, Homo floresiensis, a primitive hominin that survived until relatively recent times is an enormous challenge to paradigms of human evolution. Until this announcement, the dominant paradigm stipulated that: 1) only more derived hominins had emerged from Africa, and 2) H. sapiens was the only hominin since the demise of Homo erectus and Homo neanderthalensis. Resistance to H. floresiensis has been intense, and debate centers on two sets of competing hypotheses: 1) that it is a primitive hominin, and 2) that it is a modern human, either a pygmoid form or a pathological individual. Despite a range of analytical techniques having been applied to the question, no resolution has been reached. Here, we use cladistic analysis, a tool that has not, until now, been applied to the problem, to establish the phylogenetic position of the species. Our results produce two equally parsimonious phylogenetic trees. The first suggests that H. floresiensis is an early hominin that emerged after Homo rudolfensis (1.86Ma) but before H. habilis (1.66Ma, or after 1.9Ma if the earlier chronology for H. habilis is retained). The second tree indicates H. floresiensis branched after Homo habilis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhevol.2009.05.002DOI Listing
November 2009

Brief communication: "Pathological" deformation in the skull of LB1, the type specimen of Homo floresiensis.

Am J Phys Anthropol 2009 Sep;140(1):177-85

Department of Anthropology, National Museum of Nature and Science, Tokyo 169-0073, Japan.

If the holotype of Homo floresiensis, LB1, suffered from a severe developmental pathology, this could undermine its status as the holotype of a new species. One of the proposed pathological indicators that still remains untested is asymmetric distortion in the skull of LB1 (Jacob et al.: Proc Natl Acad Sci USA 103 (2006) 13421-13426). Here, we present evidence that LB1 exhibits antemortem craniofacial deformities that are consistent with posterior deformational (positional) plagiocephaly. This is a relatively common condition in modern people with no serious associated health problems and does not represent a severe developmental abnormality in LB1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajpa.21066DOI Listing
September 2009

The type specimen (LB1) of Homo floresiensis did not have Laron syndrome.

Am J Phys Anthropol 2009 Sep;140(1):52-63

Department of Anthropology, Florida State University, Tallahassee, FL 32306-7772, USA.

The type specimen (LB1) of Homo floresiensis has been hypothesized to be a pathological human afflicted with Laron Syndrome (LS), a type of primary growth hormone insensitivity (Hershkovitz et al.: Am J Phys Anthropol 134 [2007] 198-208). Comparing measurements, photographs and three-dimensional, computed-tomography reconstructions of LB1 with data and diagnoses from the literature on LS, we critically evaluate numerous skull and postcranial traits that Hershkovitz et al. identified as being shared by LB1 and patients with LS. The statements regarding most of these traits are new to the clinical literature and lack quantitative support. LB1 and patients with LS differ markedly in the size and shape of the cranium; thickness and pneumatization of cranial bones; morphology of the face, mandible, teeth, and chin; form of the shoulder, wrist, and pelvis; and general body proportions including relative foot size. Claims that patients with LS are similar to LB1 in displaying protracted scapulae, short clavicles, low degrees of humeral torsion, flaring ilia, and curved tibiae are not supported by data or corroborating images. Some points of similarity (e.g., femoral neck-shaft angle, femoral bicondylar angle, and estimated stature) can be found in other hominins, and cannot be considered diagnostic. From our review and analysis, we conclude that LB1 did not suffer from LS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajpa.21035DOI Listing
September 2009

The Liang Bua faunal remains: a 95k.yr. sequence from Flores, East Indonesia.

J Hum Evol 2009 Nov 6;57(5):527-37. Epub 2008 Dec 6.

Nationaal Natuurhistorisch Museum Naturalis, RA Leiden, The Netherlands.

Excavations at Liang Bua, a limestone cave on the island of Flores, East Indonesia, have yielded a well-dated archaeological and faunal sequence spanning the last 95k.yr., major climatic fluctuations, and two human species -H. floresiensis from 95 to 17k.yr.(1), and modern humans from 11k.yr. to the present. The faunal assemblage comprises well-preserved mammal, bird, reptile and mollusc remains, including examples of island gigantism in small mammals and the dwarfing of large taxa. Together with evidence from Early-Middle Pleistocene sites in the Soa Basin, it confirms the long-term isolation, impoverishment, and phylogenetic continuity of the Flores faunal community. The accumulation of Stegodon and Komodo dragon remains at the site in the Pleistocene is attributed to Homo floresiensis, while predatory birds, including an extinct species of owl, were largely responsible for the accumulation of the small vertebrates. The disappearance from the sequence of the two large-bodied, endemic mammals, Stegodon florensis insularis and Homo floresiensis, was associated with a volcanic eruption at 17 ka and precedes the earliest evidence for modern humans, who initiated use of mollusc and shell working, and began to introduce a range of exotic animals to the island. Faunal introductions during the Holocene included the Sulawesi warty pig (Sus celebensis) at about 7ka, followed by the Eurasian pig (Sus scrofa), Long-tailed macaque, Javanese porcupine, and Masked palm civet at about 4ka, and cattle, deer, and horse - possibly by the Portuguese within historic times. The Holocene sequence at the site also documents local faunal extinctions - a result of accelerating human population growth, habitat loss, and over-exploitation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhevol.2008.08.015DOI Listing
November 2009

The primitive wrist of Homo floresiensis and its implications for hominin evolution.

Science 2007 Sep;317(5845):1743-5

Human Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA.

Whether the Late Pleistocene hominin fossils from Flores, Indonesia, represent a new species, Homo floresiensis, or pathological modern humans has been debated. Analysis of three wrist bones from the holotype specimen (LB1) shows that it retains wrist morphology that is primitive for the African ape-human clade. In contrast, Neandertals and modern humans share derived wrist morphology that forms during embryogenesis, which diminishes the probability that pathology could result in the normal primitive state. This evidence indicates that LB1 is not a modern human with an undiagnosed pathology or growth defect; rather, it represents a species descended from a hominin ancestor that branched off before the origin of the clade that includes modern humans, Neandertals, and their last common ancestor.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1147143DOI Listing
September 2007

Homo floresiensis and the evolution of the hominin shoulder.

J Hum Evol 2007 Dec 13;53(6):718-31. Epub 2007 Aug 13.

Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY, USA.

The holotype of Homo floresiensis, diminutive hominins with tiny brains living until 12,000 years ago on the island of Flores, is a partial skeleton (LB1) that includes a partial clavicle (LB1/5) and a nearly complete right humerus (LB1/50). Although the humerus appears fairly modern in most regards, it is remarkable in displaying only 110 degrees of humeral torsion, well below modern human average values. Assuming a modern human shoulder configuration, such a low degree of humeral torsion would result in a lateral set to the elbow. Such an elbow joint would function more nearly in a frontal than in a sagittal plane, and this is certainly not what anyone would have predicted for a tool-making Pleistocene hominin. We argue that Homo floresiensis probably did not have a modern human shoulder configuration: the clavicle was relatively short, and we suggest that the scapula was more protracted, resulting in a glenoid fossa that faced anteriorly rather than laterally. A posteriorly directed humeral head was therefore appropriate for maintaining a normally functioning elbow joint. Similar morphology in the Homo erectus Nariokotome boy (KNM-WT 15000) suggests that this shoulder configuration may represent a transitional stage in pectoral girdle evolution in the human lineage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhevol.2007.06.003DOI Listing
December 2007

Brain shape in human microcephalics and Homo floresiensis.

Proc Natl Acad Sci U S A 2007 Feb 2;104(7):2513-8. Epub 2007 Feb 2.

Department of Anthropology, Florida State University, Tallahassee, FL 32306, USA.

Because the cranial capacity of LB1 (Homo floresiensis) is only 417 cm(3), some workers propose that it represents a microcephalic Homo sapiens rather than a new species. This hypothesis is difficult to assess, however, without a clear understanding of how brain shape of microcephalics compares with that of normal humans. We compare three-dimensional computed tomographic reconstructions of the internal braincases (virtual endocasts that reproduce details of external brain morphology, including cranial capacities and shape) from a sample of 9 microcephalic humans and 10 normal humans. Discriminant and canonical analyses are used to identify two variables that classify normal and microcephalic humans with 100% success. The classification functions classify the virtual endocast from LB1 with normal humans rather than microcephalics. On the other hand, our classification functions classify a pathological H. sapiens specimen that, like LB1, represents an approximately 3-foot-tall adult female and an adult Basuto microcephalic woman that is alleged to have an endocast similar to LB1's with the microcephalic humans. Although microcephaly is genetically and clinically variable, virtual endocasts from our highly heterogeneous sample share similarities in protruding and proportionately large cerebella and relatively narrow, flattened orbital surfaces compared with normal humans. These findings have relevance for hypotheses regarding the genetic substrates of hominin brain evolution and may have medical diagnostic value. Despite LB1's having brain shape features that sort it with normal humans rather than microcephalics, other shape features and its small brain size are consistent with its assignment to a separate species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.0609185104DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892980PMC
February 2007

Further evidence for small-bodied hominins from the Late Pleistocene of Flores, Indonesia.

Nature 2005 Oct;437(7061):1012-7

Archaeology and Palaeoanthropology, School of Human and Environmental Studies, University of New England, Armidale, New South Wales 2351, Australia.

Homo floresiensis was recovered from Late Pleistocene deposits on the island of Flores in eastern Indonesia, but has the stature, limb proportions and endocranial volume of African Pliocene Australopithecus. The holotype of the species (LB1), excavated in 2003 from Liang Bua, consisted of a partial skeleton minus the arms. Here we describe additional H. floresiensis remains excavated from the cave in 2004. These include arm bones belonging to the holotype skeleton, a second adult mandible, and postcranial material from other individuals. We can now reconstruct the body proportions of H. floresiensis with some certainty. The finds further demonstrate that LB1 is not just an aberrant or pathological individual, but is representative of a long-term population that was present during the interval 95-74 to 12 thousand years ago. The excavation also yielded more evidence for the depositional history of the cave and for the behavioural capabilities of H. floresiensis, including the butchery of Stegodon and use of fire.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature04022DOI Listing
October 2005

The brain of LB1, Homo floresiensis.

Science 2005 Apr;308(5719):242-5

Department of Anthropology, Florida State University, Tallahassee, FL 32306, USA

The brain of Homo floresiensis was assessed by comparing a virtual endocast from the type specimen (LB1) with endocasts from great apes, Homo erectus, Homo sapiens, a human pygmy, a human microcephalic, specimen number Sts 5 (Australopithecus africanus), and specimen number WT 17000 (Paranthropus aethiopicus). Morphometric, allometric, and shape data indicate that LB1 is not a microcephalic or pygmy. LB1's brain/body size ratio scales like that of an australopithecine, but its endocast shape resembles that of Homo erectus. LB1 has derived frontal and temporal lobes and a lunate sulcus in a derived position, which are consistent with capabilities for higher cognitive processing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1109727DOI Listing
April 2005

A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia.

Nature 2004 Oct;431(7012):1055-61

Archaeology & Palaeoanthropology, School of Human & Environmental Studies, University of New England, Armidale, New South Wales 2351, Australia.

Currently, it is widely accepted that only one hominin genus, Homo, was present in Pleistocene Asia, represented by two species, Homo erectus and Homo sapiens. Both species are characterized by greater brain size, increased body height and smaller teeth relative to Pliocene Australopithecus in Africa. Here we report the discovery, from the Late Pleistocene of Flores, Indonesia, of an adult hominin with stature and endocranial volume approximating 1 m and 380 cm3, respectively--equal to the smallest-known australopithecines. The combination of primitive and derived features assigns this hominin to a new species, Homo floresiensis. The most likely explanation for its existence on Flores is long-term isolation, with subsequent endemic dwarfing, of an ancestral H. erectus population. Importantly, H. floresiensis shows that the genus Homo is morphologically more varied and flexible in its adaptive responses than previously thought.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature02999DOI Listing
October 2004