Publications by authors named "E R Jasper Wubs"

11 Publications

The aerobiome uncovered: Multi-marker metabarcoding reveals potential drivers of turn-over in the full microbial community in the air.

Environ Int 2021 Apr 12;154:106551. Epub 2021 Apr 12.

Wageningen Environmental Research, Wageningen University & Research, PO Box 47, 6700 AA Wageningen, the Netherlands.

Air is a major conduit for the dispersal of organisms at the local and the global scale. Most research has focused on the dispersal of plants, vertebrates and human disease agents. However, the air represents a key dispersal medium also for bacteria, fungi and protists. Many of those represent potential pathogens of animals and plants and have until now gone largely unrecorded. Here we studied the turnover in composition of the entire aerobiome, the collective diversity of airborne microorganisms. For that we performed daily analyses of all prokaryotes and eukaryotes (including plants) using multi-marker high-throughput sequencing for a total of three weeks. We linked the resulting communities to local weather conditions, to assess determinants of aerobiome composition and distribution. We observed hundreds of microbial taxa, mostly belonging to spore-forming organisms including fungi, but also protists. Additionally, we detected many potential human- and plant-pathogens. Community composition fluctuated on a daily basis and was linked to concurrent weather conditions, particularly air pressure and temperature. Using network analyses, we identified taxonomically diverse groups of organisms with correlated temporal dynamics. In part, this was due to co-variation with environmental conditions, while we could also detect specific host-parasite interactions. This study provides the first full inventory of the aerobiome and identifies putative drivers of its dynamics in terms of taxon composition. This knowledge can help develop early warning systems against pathogens and improve our understanding of microbial dispersal.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2021.106551DOI Listing
April 2021

Topsoil translocation in extensively managed arable field margins promotes plant species richness and threatened arable plant species.

J Environ Manage 2020 Apr 22;260:110126. Epub 2020 Jan 22.

University of Liege, Gembloux Agro-Bio Tech, Biodiversity and Landscape Unit, Passage des Déportés 2, 5030, Gembloux, Belgium.

Since the 1950s, agriculture has intensified drastically, which has led to a significant biodiversity decline on arable lands. This decline was especially dramatic for segetal plant species, the specialist species of cereal fields. Due to the low population density and poor dispersal abilities of many segetal species, the recovery of species-rich fields may fail even though the environmental conditions are suitable. Therefore, conservation efforts including active restoration measures aimed at recovering segetal vegetation are needed. To this purpose, we propose to alleviate dispersal limitation by means of topsoil translocation from a species-rich donor arable field. At two receiver sites, we tested this technique using two topsoil-spreading densities, i.e. 2.5L/m and 5L/m in experimental plots (3 m). At one receiver site, we tested the impact of topsoil translocation from two different donor sites, while in the other receiver site one donor site was used. We compared plant species diversity and composition of treated plots with control plots as well as with the species composition of the donor sites (field survey) and their seed bank (greenhouse survey). Species richness was increased by topsoil spreading, including richness of threatened species. 33% and 71% of the threatened species were successfully translocated respectively at the two receiver sites. At one site, plant cover was also increased, including threatened species cover. Conversely, topsoil spreading did not promote pernicious species that could affect farmer acceptance negatively. Vegetation of translocated plots was more similar in terms of species composition to donor site seed banks than to donor site field survey. The higher spreading density led to increased species richness when seed bank in topsoil had lower density. Our results show that topsoil translocation can be a highly effective method for restoring threatened segetal plant communities in agricultural landscapes. Even when a full plant community was already present (Receiver 1) topsoil transfer led to a doubling in species richness. The seed bank surveys were a good indicator of plant community composition upon topsoil translocation in the field and are therefore advisable to implement in the project-planning phase to evaluate donor site potential. From our results, we recommend to spread soil at an overall rate of 500 seeds/m equivalent. Future studies need to assess the long-term fate of the translocated species as well as the impacts of soil harvests on the donor sites to establish sustainable use levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2020.110126DOI Listing
April 2020

Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands.

Glob Chang Biol 2020 Feb 3. Epub 2020 Feb 3.

Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.

Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature - herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local-scale herbivory, and its interaction with nutrient enrichment and climate, within global-scale models to better predict land-atmosphere interactions under future climate change.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.15023DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7155038PMC
February 2020

Single introductions of soil biota and plants generate long-term legacies in soil and plant community assembly.

Ecol Lett 2019 Jul 24;22(7):1145-1151. Epub 2019 Apr 24.

Netherlands Institute of Ecology (NIOO-KNAW), Department of Terrestrial Ecology, P.O. Box 50, 6700 AB, Wageningen, the Netherlands.

Recent demonstrations of the role of plant-soil biota interactions have challenged the conventional view that vegetation changes are mainly driven by changing abiotic conditions. However, while this concept has been validated under natural conditions, our understanding of the long-term consequences of plant-soil interactions for above-belowground community assembly is restricted to mathematical and conceptual model projections. Here, we demonstrate experimentally that one-time additions of soil biota and plant seeds alter soil-borne nematode and plant community composition in semi-natural grassland for 20 years. Over time, aboveground and belowground community composition became increasingly correlated, suggesting an increasing connectedness of soil biota and plants. We conclude that the initial composition of not only plant communities, but also soil communities has a long-lasting impact on the trajectory of community assembly.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.13271DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850328PMC
July 2019

Potential for synergy in soil inoculation for nature restoration by mixing inocula from different successional stages.

Plant Soil 2018 3;433(1):147-156. Epub 2018 Oct 3.

1Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands.

Background And Aims: Soil inoculation is a powerful tool for the restoration of terrestrial ecosystems. However, the origin of the donor material may differentially influence early- and late-successional plant species. Donor soil from late-succession stages may benefit target plant species due to a higher abundance of soil-borne mutualists. Arable soils, on the other hand, may suppress ruderals as they support more root herbivores that preferentially attack ruderal plant species, while mid-succession soils may be intermediate in their effects on ruderals and target species performance. We hypothesized that a mixture of arable and late-succession inocula may outperform pure late-successional inocula for restoration, by promoting late-successional target plants, while simultaneously reducing ruderal species' performance.

Methods: We conducted a glasshouse experiment and tested the growth of ruderal and target plant species on pure and mixed inocula. The inocula were derived from arable fields, mid-succession grasslands and late-succession heathlands and we created a replacement series testing different pairwise mixitures for each of these inocula types (ratios: 100:0, 75:25, 50:50, 25:75, 0:100 of inoculum A and B respectively).

Results: In general, we found that a higher proportion of heathland material led to a higher aboveground biomass of target plant species, while responses of ruderal species were variable. We found synergistic effects when specific inocula were mixed. In particular, a 50:50 mixture of heathland and arable soil in the inoculum led to a significant reduction in ruderal species biomass relative to the two respective pure inocula. The overall response was driven by , since the other two ruderal species were not significantly affected.

Conclusions: Mixing inocula from different successional stages can lead to synergistic effects on restoration, but this highly depends on the specific combination of inocula, the mixing ratio and plant species. This suggest that specific inocula may need to be developed in order to rapidly restore different plant communities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11104-018-3825-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405189PMC
October 2018