Publications by authors named "Dulcie B Schmidt"

16 Publications

  • Page 1 of 1

Pharmacological characterization of GSK573719 (umeclidinium): a novel, long-acting, inhaled antagonist of the muscarinic cholinergic receptors for treatment of pulmonary diseases.

J Pharmacol Exp Ther 2013 May 22;345(2):260-70. Epub 2013 Feb 22.

GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania, USA.

Activation of muscarinic subtype 3 (M3) muscarinic cholinergic receptors (mAChRs) increases airway tone, whereas its blockade improves lung function and quality of life in patients with pulmonary diseases. The present study evaluated the pharmacological properties of a novel mAChR antagonist, GSK573719 (4-[hydroxy(diphenyl)methyl]-1-{2-[(phenylmethyl)oxy]ethyl}-1-azoniabicyclo[2.2.2]octane; umeclidinium). The affinity (Ki) of GSK573719 for the cloned human M1-M5 mAChRs ranged from 0.05 to 0.16 nM. Dissociation of [(3)H]GSK573719 from the M3 mAChR was slower than that for the M2 mAChR [half-life (t1/2) values: 82 and 9 minutes, respectively]. In Chinese hamster ovary cells transfected with recombinant human M3 mAChRs, GSK573719 demonstrated picomolar potency (-log pA2 = 23.9 pM) in an acetylcholine (Ach)-mediated Ca(2+) mobilization assay. Concentration-response curves indicate competitive antagonism with partial reversibility after drug washout. Using isolated human bronchial strips, GSK573719 was also potent and showed competitive antagonism (-log pA2 = 316 pM) versus carbachol, and was slowly reversible in a concentration-dependent manner (1-100 nM). The time to 50% restoration of contraction at 10 nM was about 381 minutes (versus 413 minutes for tiotropium bromide). In mice, the ED50 value was 0.02 μg/mouse intranasally. In conscious guinea pigs, intratracheal administration of GSK573719 dose dependently blocked Ach-induced bronchoconstriction with long duration of action, and was comparable to tiotropium; 2.5 μg elicited 50% bronchoprotection for >24 hours. Thus, GSK573719 is a potent anticholinergic agent that demonstrates slow functional reversibility at the human M3 mAChR and long duration of action in animal models. This pharmacological profile translated into a 24-hour duration of bronchodilation in vivo, which suggested umeclidinium will be a once-daily inhaled treatment of pulmonary diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.112.202051DOI Listing
May 2013

Tyrosine urea muscarinic acetylcholine receptor antagonists: achiral quaternary ammonium groups.

Bioorg Med Chem Lett 2012 Dec 2;22(23):7087-91. Epub 2012 Oct 2.

GlaxoSmithKline, 709 Swedeland Road, PO Box 1539, King of Prussia, PA 19406-0939, USA.

Tyrosine ureas had been identified as potent muscarinic receptor antagonists with promising in vivo activity. Controlling the stereochemistry of the chiral quaternary ammonium center had proved to be a serious issue for this series, however. Herein we describe the preparation and SAR of tyrosine urea antagonists containing achiral quaternary ammonium centers. The most successful such moiety was the 2-methylimidazo[2,1-b][1,3]thiazol-7-ium group which yielded highly potent antagonists with long duration of action in an inhaled animal model of bronchoconstriction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2012.09.085DOI Listing
December 2012

Design, synthesis and structure-activity relationship of N-substituted tropane muscarinic acetylcholine receptor antagonists.

Bioorg Med Chem Lett 2012 May 15;22(9):3366-9. Epub 2012 Feb 15.

GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, USA.

A novel series of N-substituted tropane derivatives was characterized as potent muscarinic acetylcholine receptor antagonists (mAChRs). Kinetic washout studies showed that the N-endosubstituted analog 24 displayed much slower reversibility at mAChRs than the methyl-substituted parent molecule darotropium. In addition, it was shown that this characteristic appeared to translate into enhanced which duration of action in a mouse model of bronchonstriction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2012.02.015DOI Listing
May 2012

Discovery of (3-endo)-3-(2-cyano-2,2-diphenylethyl)-8,8-dimethyl-8-azoniabicyclo[3.2.1]octane bromide as an efficacious inhaled muscarinic acetylcholine receptor antagonist for the treatment of COPD.

Bioorg Med Chem Lett 2009 Aug 8;19(16):4560-2. Epub 2009 Jul 8.

Respiratory Centre of Excellence for Drug Discovery, Research and Development, GlaxoSmithKline Pharmaceuticals, King of Prussia, PA 19406, USA.

Design and syntheses of a novel series of muscarinic antagonists are reported. These efforts have culminated in the discovery of (3-endo)-3-(2-cyano-2,2-diphenylethyl)-8,8-dimethyl-8-azoniabicyclo[3.2.1]octane bromide (4a) as a potent and pan-active muscarinic antagonist as well as a functionally active compound in a murine model of bronchoconstriction. The compound has also displayed pharmacokinetic characteristics suitable for inhaled delivery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2009.07.006DOI Listing
August 2009

Optimized procedures for producing biologically active chemokines.

Protein Expr Purif 2009 Jun;65(2):251-60

GlaxoSmithKline, Biological Reagents & Assay Development, Mail Code: UE0548, 709 Swedeland Road, King of Prussia, PA 19406, USA.

We describe here two strategies to produce biologically active chemokines with authentic N-terminal amino acid residues. The first involves producing the target chemokine with an N-terminal 6xHis-SUMO tag in Escherichia coli as inclusion bodies. The fusion protein is solubilized and purified with Ni-NTA-agarose in denaturing reagents. This is further followed by tag removal and refolding in a redox refolding buffer. The second approach involves expressing the target chemokine with an N-terminal 6xHis-Trx-SUMO tag in an engineered E. coli strain that facilitates formation of disulfide bonds in the cytoplasm. Following purification of the fusion protein via Ni-NTA and tag removal, the target chemokine is refolded without redox buffer and purified by reverse phase chromatography. Using the procedures, we have produced more than 15 biologically active chemokines, with a yield of up to 15 mg/L.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2009.01.017DOI Listing
June 2009

Camphor sulfonamide derivatives as novel, potent and selective CXCR3 antagonists.

Bioorg Med Chem Lett 2009 Jan 6;19(1):114-8. Epub 2008 Nov 6.

Center of Excellence for Drug Discovery, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA.

A series of N-arylpiperazine camphor sulfonamides was discovered as novel CXCR3 antagonists. The synthesis, structure-activity relationships, and optimization of the initial hit that resulted in the identification of potent and selective CXCR3 antagonists are described.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2008.11.008DOI Listing
January 2009

3-Arylamino-2H-1,2,4-benzothiadiazin-5-ol 1,1-dioxides as novel and selective CXCR2 antagonists.

Bioorg Med Chem Lett 2007 Jul 10;17(14):3864-7. Epub 2007 May 10.

Discovery Medicinal Chemistry, Molecular Discovery Research, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA.

A series of 3-arylamino-2H-1,2,4-benzothiadiazin-5-ol 1,1-dioxides were prepared and shown to be novel and selective antagonists of the CXCR2 receptor. Synthesis, structure and activity relationships, selectivity, and some developability properties are described.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2007.05.011DOI Listing
July 2007

Comparison of N,N'-diarylsquaramides and N,N'-diarylureas as antagonists of the CXCR2 chemokine receptor.

Bioorg Med Chem Lett 2007 Mar 23;17(6):1713-7. Epub 2006 Dec 23.

GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, USA.

N,N'-diarylsquaramides were prepared and evaluated as antagonists of CXCR2. The compounds were found to be potent and selective antagonists of CXCR2. Significant differences in SAR was observed relative to the previously described N,N'-diarylurea series. As was the case in the N,N'-diarylurea series, placing sulfonamide substituent adjacent to the acidic phenol significantly reduced the clearance in rat pharmacokinetic studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2006.12.067DOI Listing
March 2007

N,N'-Diarylcyanoguanidines as antagonists of the CXCR2 and CXCR1 chemokine receptors.

Bioorg Med Chem Lett 2006 Nov 24;16(21):5513-6. Epub 2006 Aug 24.

GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, USA.

A series of N-(2-hydroxy-3-sulfonamidobenzene)-N'-arylcyanoguanidines was prepared. In general, these compounds proved to be potent antagonists of CXCR2 while the selectivity versus CXCR1 ranged from non-selective to >200-fold.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2006.08.042DOI Listing
November 2006

The peptidic urotensin-II receptor ligand GSK248451 possesses less intrinsic activity than the low-efficacy partial agonists SB-710411 and urantide in native mammalian tissues and recombinant cell systems.

Br J Pharmacol 2006 May;148(2):173-90

Department of Vascular Biology and Thrombosis, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, USA.

Several peptidic urotensin-II (UT) receptor antagonists exert 'paradoxical' agonist activity in recombinant cell- and tissue-based bioassay systems, likely the result of differential urotensin-II receptor (UT receptor) signal transduction/coupling efficiency between assays. The present study has examined this phenomenon in mammalian arteries and recombinant UT-HEK (human embryonic kidney) cells.BacMam-mediated recombinant UT receptor upregulation in HEK cells augmented agonist activity for all four peptidic UT ligands studied. The nominal rank order of relative intrinsic efficacy was U-II>urantide ([Pen(5)-DTrp(7)-Orn(8)]hU-II(4-11))>SB-710411 (Cpa-c[DCys-Pal-DTrp-Lys-Val-Cys]-Cpa-amide)>GSK248451 (Cin-c[DCys-Pal-DTrp-Orn-Val-Cys]-His-amide) (the relative coupling efficiency of recombinant HEK cells was cat>human>rat UT receptor). The present study further demonstrated that the use of high signal transduction/coupling efficiency isolated blood vessel assays (primate>cat arteries) is required in order to characterize UT receptor antagonism thoroughly. This cannot be attained simply by using the rat isolated aorta, an artery with low signal transduction/coupling efficiency in which low-efficacy agonists appear to function as antagonists. In contrast to the 'low-efficacy agonists' urantide and SB-710411, GSK248451 functioned as a potent UT receptor antagonist in all native isolated tissues studied (UT receptor selectivity was confirmed in the rat aorta). Further, GSK248451 exhibited an extremely low level of relative intrinsic activity in recombinant HEK cells (4-5-fold less than seen with urantide). Since GSK248451 (1 mg kg(-1), i.v.) blocked the systemic pressor actions of exogenous U-II in the anaesthetized cat, it represents a suitable peptidic tool antagonist for delineating the role of U-II in the aetiology of mammalian cardiometabolic diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.bjp.0706716DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1617064PMC
May 2006

Aminoalkoxybenzyl pyrrolidines as novel human urotensin-II receptor antagonists.

Bioorg Med Chem Lett 2005 Jul;15(13):3229-32

High Throughput Chemistry, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA.

High throughput screening of the corporate compound collection led to the discovery of a novel series of substituted aminoalkoxybenzyl pyrrolidines as human urotensin-II receptor antagonists. The synthesis, initial structure-activity relationships, and optimization of the initial hit that led to the identification of a truncated sub-series, represented by SB-436811 (1a), are described.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2005.04.074DOI Listing
July 2005

Nonpeptidic urotensin-II receptor antagonists I: in vitro pharmacological characterization of SB-706375.

Br J Pharmacol 2005 Jul;145(5):620-35

CVU Department of Biology, Cardiovascular and Urogenital and Respiratory and Inflammation Centers of Excellence for Drug Discovery, GlaxoSmithKline, 709 Swedeland Road, UW2510 King of Prussia, PA 19406-0939, USA.

1. SB-706375 potently inhibited [(125)I]hU-II binding to both mammalian recombinant and 'native' UT receptors (K(i) 4.7+/-1.5 to 20.7+/-3.6 nM at rodent, feline and primate recombinant UT receptors and K(i) 5.4+/-0.4 nM at the endogenous UT receptor in SJRH30 cells). 2. Prior exposure to SB-706375 (1 microM, 30 min) did not alter [(125)I]hU-II binding affinity or density in recombinant cells (K(D) 3.1+/-0.4 vs 5.8+/-0.9 nM and B(max) 3.1+/-1.0 vs 2.8+/-0.8 pmol mg(-1)) consistent with a reversible mode of action. 3. The novel, nonpeptidic radioligand [(3)H]SB-657510, a close analogue of SB-706375, bound to the monkey UT receptor (K(D) 2.6+/-0.4 nM, B(max) 0.86+/-0.12 pmol mg(-1)) in a manner that was inhibited by both U-II isopeptides and SB-706375 (K(i) 4.6+/-1.4 to 17.6+/-5.4 nM) consistent with the sulphonamides and native U-II ligands sharing a common UT receptor binding domain. 4. SB-706375 was a potent, competitive hU-II antagonist across species with pK(b) 7.29-8.00 in HEK293-UT receptor cells (inhibition of [Ca(2+)](i)-mobilization) and pK(b) 7.47 in rat isolated aorta (inhibition of contraction). SB-706375 also reversed tone established in the rat aorta by prior exposure to hU-II (K(app) approximately 20 nM). 5. SB-706375 was a selective U-II antagonist with >/=100-fold selectivity for the human UT receptor compared to 86 distinct receptors, ion channels, enzymes, transporters and nuclear hormones (K(i)/IC(50)>1 microM). Accordingly, the contractile responses induced in isolated aortae by KCl, phenylephrine, angiotensin II and endothelin-1 were unaltered by SB-706375 (1 microM). 6. In summary, SB-706375 is a high-affinity, surmountable, reversible and selective nonpeptide UT receptor antagonist with cross-species activity that will assist in delineating the pathophysiological actions of U-II in mammals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.bjp.0706229DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1576177PMC
July 2005

A coding polymorphism in the CYSLT2 receptor with reduced affinity to LTD4 is associated with asthma.

Pharmacogenetics 2004 Sep;14(9):627-33

Genetics Research, GlaxoSmithKline Research Triangle Park, NC, USA.

Background: Cysteinyl leukotrienes (CYSLTR) are potent biological mediators in the pathophysiology of asthma for which two receptors have been characterized, CYSLTR1 and CYSLTR2. The leukotriene modifying agents currently used to control bronchoconstriction and inflammation in asthmatic patients are CYSLTR1-specific leukotriene receptor antagonists. In this report, we investigated a possible role for therapeutic modulation of CYSLTR2 in asthma by investigating genetic association with asthma and further characterization of the pharmacology of a coding polymorphism.

Methods: The association of CYSLTR2 polymorphisms with asthma was assessed by transmission disequilibrium test in two family-based collections (359 families from Denmark and Minnesota, USA and 384 families from the Genetics of Asthma International Network).

Results: A significant association of the coding polymorphism, 601A>G, with asthma was observed (P = 0.003). We replicated these findings in a collection of 384 families from the Genetics of Asthma International Network (P = 0.04). The G allele is significantly under-transmitted to asthmatics, indicating a possible role for this receptor in resistance to asthma. The potency of cysteinyl leukotrienes at the wild-type CYSLTR2 and the coding polymorphism 601A>G were assessed using a calcium mobilization assay. The potency of LTC4 and LTE4 was similar for both forms of the receptor and LTB4 was inactive, however, LTD4 was approximately five-fold less potent on 601A>G compared to wild-type CYSLTR2.

Conclusions: Since 601A>G alters the potency of LTD4 and this variant allele may be associated with resistance to asthma, it is possible that modulation of the CYSLTR2 may be useful in asthma pharmacotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/00008571-200409000-00007DOI Listing
September 2004

Regulation of TNF-alpha- and IFN-gamma-induced CXCL10 expression: participation of the airway smooth muscle in the pulmonary inflammatory response in chronic obstructive pulmonary disease.

FASEB J 2004 Jan 3;18(1):191-3. Epub 2003 Nov 3.

GlaxoSmithKline, Respiratory and Inflammation, Centre for Excellence in Drug Discovery, King of Prussia, Pennsylvania 19406, USA.

The chemokine CXCL10 is produced by many inflammatory cells found in the diseased lung and has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). The present study demonstrates elevated CXCL10 protein in the lungs of COPD patients, which appears histologically in airway smooth muscle (hASM). In primary cultured hASM cells taken from normal donors, CXCL10 protein expression was induced by IFN-gamma and TNF-alpha, cytokines reported as elevated in COPD, and a synergistic response was obtained when they were combined. TNF-alpha stimulation of hASM enhanced accumulation of CXCL10 mRNA, indicating regulation at the transcriptional level, while IFN-gamma stimulation resulted in a smaller accumulation of CXCL10 mRNA. When these cytokines were applied simultaneously, an additive effect was obtained. TNF-alpha-induced CXCL10 expression in hASM was dependent on NFkappaB activation, and a salicylanilide NFkappaB inhibitor blocked the CXCL10 expression. In contrast, IFN-gamma stimulation resulted in transient NFkappaB activation, and the inhibitor had little effect on CXCL10 expression. When these cytokines were added simultaneously, NFkappaB was activated earlier and lasted longer, and the effect was blocked by the inhibitor. These data demonstrate a potential active role for hASM in pulmonary inflammatory diseases such as COPD by producing CXCL10.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.03-0170fjeDOI Listing
January 2004

A potent and selective nonpeptide antagonist of CXCR2 inhibits acute and chronic models of arthritis in the rabbit.

J Immunol 2002 Dec;169(11):6435-44

Respiratory and Inflammation Center of Excellence for Drug Discovery, Seattle, WA 98108, USA.

Much evidence implicates IL-8 as a major mediator of inflammation and joint destruction in rheumatoid arthritis. The effects of IL-8 and its related ligands are mediated via two receptors, CXCR1 and CXCR2. In the present study, we demonstrate that a potent and selective nonpeptide antagonist of human CXCR2 potently inhibits (125)I-labeled human IL-8 binding to, and human IL-8-induced calcium mobilization mediated by, rabbit CXCR2 (IC(50) = 40.5 and 7.7 nM, respectively), but not rabbit CXCR1 (IC(50) = >1000 and 2200 nM, respectively). These data suggest that the rabbit is an appropriate species in which to examine the anti-inflammatory effects of a human CXCR2-selective antagonist. In two acute models of arthritis in the rabbit induced by knee joint injection of human IL-8 or LPS, and a chronic Ag (OVA)-induced arthritis model, administration of the antagonist at 25 mg/kg by mouth twice a day significantly reduced synovial fluid neutrophils, monocytes, and lymphocytes. In addition, in the more robust LPS- and OVA-induced arthritis models, which were characterized by increased levels of proinflammatory mediators in the synovial fluid, TNF-alpha, IL-8, PGE(2), leukotriene B(4), and leukotriene C(4) levels were significantly reduced, as was erythrocyte sedimentation rate, possibly as a result of the observed decreases in serum TNF-alpha and IL-8 levels. In vitro, the antagonist potently inhibited human IL-8-induced chemotaxis of rabbit neutrophils (IC(50) = 0.75 nM), suggesting that inhibition of leukocyte migration into the knee joint is a likely mechanism by which the CXCR2 antagonist modulates disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.169.11.6435DOI Listing
December 2002

Nonpeptide tachykinin receptor antagonists. III. SB 235375, a low central nervous system-penetrant, potent and selective neurokinin-3 receptor antagonist, inhibits citric acid-induced cough and airways hyper-reactivity in guinea pigs.

J Pharmacol Exp Ther 2002 Jan;300(1):314-23

GlaxoSmithKline, Department of Pulmonary Biology, King of Prussia, Pennsylvania 19406, USA.

In this report the in vitro and in vivo pharmacological and pharmacokinetic profile of (-)-(S)-N-(alpha-ethylbenzyl)-3-(carboxymethoxy)-2-phenylquinoline-4-carboxamide (SB 235375), a low central nervous system (CNS)-penetrant, human neurokinin-3 (NK-3) receptor (hNK-3R) antagonist, is described. SB 235375 inhibited (125)I-[MePhe(7)]-neurokinin B (NKB) binding to membranes of Chinese hamster ovary (CHO) cells expressing the hNK-3R (CHO-hNK-3R) with a K(i) = 2.2 nM and antagonized competitively NKB-induced Ca(2+) mobilization in human embryonic kidney (HEK) 293 cells expressing the hNK-3R (HEK 293-hNK-3R) with a K(b) = 12 nM. SB 235375 antagonized senktide (NK-3R)-induced contractions in rabbit isolated iris sphincter (pA(2) = 8.1) and guinea pig ileal circular smooth muscles (pA(2) = 8.3). SB 235375 was selective for the hNK-3R compared with hNK-1 (K(i) > 100,000 nM) and hNK-2 receptors (K(i) = 209 nM), and was without effect, at 1 microM, in 68 other receptor, enzyme, and ion channel assays. Intravenous SB 235375 produced a dose-related inhibition of miosis induced by i.v. senktide in the rabbit (ED(50) of 0.56 mg/kg). Intraperitoneal SB 235375 (10-30 mg/kg) inhibited citric acid-induced cough and airways hyper-reactivity in guinea pigs. In mice oral SB 235375 (3-30 mg/kg) was without significant effect on the behavioral responses induced by intracerebral ventricular administration of senktide. Pharmacokinetic evaluation in the mouse and rat revealed that oral SB 235375 was well absorbed systemically but did not effectively cross the blood-brain barrier. The preclinical profile of SB 235375, encompassing high affinity, selectivity, oral activity, and low CNS penetration, suggests that it is an appropriate tool compound to define the pathophysiological roles of the NK-3Rs in the peripheral nervous system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.300.1.314DOI Listing
January 2002