Publications by authors named "Douglas R Tocher"

141 Publications

Dietary chromium modulates glucose homeostasis and induces oxidative stress in Pacific white shrimp (Litopenaeus vannamei).

Aquat Toxicol 2021 Sep 14;240:105967. Epub 2021 Sep 14.

Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China. Electronic address:

While chromium (Cr) has been recognized as an essential nutrient for all animals, and dietary supplementation can be beneficial, it can also be toxic. The present study aimed to investigate the contrasting effects of dietary chromium in Pacific white shrimp Litopenaeus vannamei. Five experimental diets were formulated to contain Cr at levels of 0.82 (Cr0.82, unsupplemented diet), 1.01 (Cr1.01), 1.22 (Cu1.22), 1.43 (Cr1.43) and 1.63 (Cr1.63) mg/kg and were fed to shrimp for 8 weeks. Highest weight gain was recorded in shrimp fed the diet containing 1.22 mg/kg Cr. Shrimp fed the diet containing the highest level of Cr (1.63 mg/kg) showed the lowest weight gain and clear signs of oxidative stress and apoptosis as evidenced by higher levels of HO, malondialdehyde and 8-hydroxydeoxyguanosine, and expression of caspase 2, 3, 5, and lower contents of total and oxidized glutathione, and expression of Cu/Zn sod, cat, gpx, mt, bcl2. Chromium supplementation promoted glycolysis and inhibited gluconeogenesis as shown by increased activities of hexokinase, phosphofructokinase and pyruvate kinase, and reduced activity of phosphoenolpyruvate carboxykinase in shrimp fed the diet containing 1.43 mg/kg Cr. Shrimp fed the diet with 1.63 mg/kg Cr had lowest contents of crustacean hyperglycemic hormone and insulin like peptide in hemolymph. Expression of genes involved in insulin signaling pathway and glycose metabolism including insr, irs1, pik3ca, pdpk1, akt, acc1, gys, glut1, pk, hk were up-regulated, and foxO1, gsk-3β, g6pc, pepck were down-regulated in shrimp fed the diets supplemented with Cr. This study demonstrated that optimum dietary supplementation of Cr had beneficial effects on glucose homeostasis and growth, whereas excess caused oxidative damage and impaired growth. The results contribute to our understanding of the biological functions of chromium in shrimp.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2021.105967DOI Listing
September 2021

Dietary Betaine Mitigates Hepatic Steatosis and Inflammation Induced by a High-Fat-Diet by Modulating the Sirt1/Srebp-1/Pparɑ Pathway in Juvenile Black Seabream ().

Front Immunol 2021 23;12:694720. Epub 2021 Jun 23.

Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China.

The present study aimed to elucidate the mechanism of dietary betaine, as a lipid-lowering substance, on the regulation of lipid metabolism and inflammation in juvenile black seabream () fed a high fat diet. An 8-week feeding trial was conducted in black seabream with an initial weight of 8.39 ± 0.01g fed four isonitrogenous diets including Control, medium-fat diet (11%); HFD, high-fat diet (17%); and HFD supplemented with two levels (10 and 20 g/kg) of betaine, HFD+B1 and HFD+B2, respectively. SGR and FE in fish fed HFD+B2 were significantly higher than in fish fed HFD. Liver histology revealed that vacuolar fat droplets were smaller and fewer in bream fed HFD supplemented with betaine compared to fish fed HFD. Betaine promoted the mRNA and protein expression levels of silent information regulator 1 (Sirt1), up-regulated mRNA expression and protein content of lipid peroxisome proliferator-activated receptor alpha (), and down-regulated mRNA expression and protein content of sterol regulatory element-binding protein-1(). Furthermore, the mRNA expression levels of anti-inflammatory cytokines in liver and intestine were up-regulated, while nuclear factor kB ) and pro-inflammatory cytokines were down-regulated by dietary betaine supplementation. Likewise, in fish that received lipopolysaccharide (LPS) to stimulate inflammatory responses, the expression levels of mRNAs of anti-inflammatory cytokines in liver, intestine and kidney were up-regulated in fish fed HFD supplemented with betaine compared with fish fed HFD, while and pro-inflammatory cytokines were down-regulated. This is the first report to suggest that dietary betaine could be an effective feed additive to alleviate hepatic steatosis and attenuate inflammatory responses in black seabream fed a high fat diet by modulating the Sirt1/Srebp-1/Pparɑ pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2021.694720DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8261298PMC
June 2021

Environmental salinity and dietary lipid nutrition strategy: Effects on flesh quality of the marine euryhaline crab Scylla paramamosain.

Food Chem 2021 Nov 19;361:130160. Epub 2021 May 19.

Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China. Electronic address:

The quality of crustaceans' flesh has direct impact on consumers' purchase choices, with water environment and dietary nutrition being effective ways to regulate flesh quality. The aim of present study was to investigate the impacts of water salinity (low, 4 and medium, 23) and dietary lipid source (fish oil and soybean oil) on nutritional values, texture, taste and odor of flesh of mud crab. While water salinity had no significant influence on nutritional values of crab flesh, crabs fed soybean oil displayed significantly lower contents of amino acids and n-3 PUFAs in muscle. However, crabs reared at low salinity showed reduced flesh hardness, chewiness and gumminess likely related to altered myofiber structure, that impacted muscle texture. Furthermore, low salinity and dietary soybean oil weakened umami taste and aroma characteristics of crab flesh associated with decreased contents of free amino acids, flavor nucleotides, inorganic ions and odor active compounds in flesh.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2021.130160DOI Listing
November 2021

Untargeted lipidomics reveals metabolic responses to different dietary n-3 PUFA in juvenile swimming crab (Portunus trituberculatus).

Food Chem 2021 Aug 13;354:129570. Epub 2021 Mar 13.

Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China. Electronic address:

While tissue fatty acid compositions reflect that of the dietary lipid source, little information is available on how dietary oils modify lipid class and molecular species profiles in hepatopancreas of crustacean. Herein, an 8-week nutritional trial and untargeted lipidomic analysis were used to investigate the impacts of dietary n-3 PUFA lipid sources including fish oil, krill oil and linseed oil on the lipidomic characteristics of hepatopancreas of swimming crab (Portunus trituberculatus). Dietary krill oil significantly increased distribution of 20:5n-3 and 22:6n-3 at sn-2 in phosphatidylcholine and phosphatidylethanolamine compared to fish oil. Fish oil intake promoted the deposition of 20:5n-3 and 22:6n-3 at sn-1,2,3 in triglyceride compared to linseed oil, which significantly increased the specific accumulation of 18:3n-3 at sn-1,3 in triglyceride and sn-2 in phosphatidylcholine and phosphatidylethanolamine. The study revealed metabolic responses to different dietary n-3 PUFA in swimming crab, which provided novel insight into the lipid nutrition of crustacean.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2021.129570DOI Listing
August 2021

Regulation of long-chain polyunsaturated fatty acid biosynthesis in teleost fish.

Prog Lipid Res 2021 04 16;82:101095. Epub 2021 Mar 16.

College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China. Electronic address:

Omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA, C), including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), are involved in numerous biological processes and have a range of health benefits. Fish have long been considered as the main source of n-3 LC-PUFA in human diets. However, the capacity for endogenous biosynthesis of LC-PUFA from C PUFA varies in fish species based on the presence, expression and activity of key enzymes including fatty acyl desaturases (Fads) and elongation of very long-chain fatty acids (Elovl) proteins. In this article, we review progress on the identified Fads and Elovl, as well as the regulatory mechanisms of LC-PUFA biosynthesis both at transcriptional and post-transcriptional levels in teleosts. The most comprehensive advances have been obtained in rabbitfish Siganus canaliculatus, a marine teleost demonstrated to have the entire pathway for LC-PUFA biosynthesis, including the roles of transcription factors hepatocyte nuclear factor 4α (Hnf4α), liver X receptor alpha (Lxrα), sterol regulatory element-binding protein 1 (Srebp-1), peroxisome proliferator-activated receptor gamma (Pparγ) and stimulatory protein 1 (Sp1), as well as post-transcriptional regulation by individual microRNA (miRNA) or clusters. This research has, for the first time, demonstrated the involvement of Hnf4α, Pparγ and miRNA in the regulation of LC-PUFA biosynthesis in vertebrates. The present review provides readers with a relatively comprehensive overview of the progress made into understanding LC-PUFA biosynthetic systems in teleosts, and some insights into improving endogenous LC-PUFA biosynthesis capacity aimed at reducing the dependence of aquafeeds on fish oil while maintaining or increasing flesh LC-PUFA content and the nutritional quality of farmed fish.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plipres.2021.101095DOI Listing
April 2021

Dietary soybean oil aggravates the adverse effects of low salinity on intestinal health in juvenile mud crab Scylla paramamosain.

Ecotoxicol Environ Saf 2021 Apr 11;213:112004. Epub 2021 Feb 11.

Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China. Electronic address:

Salinity is one of the important factors affecting the physiological state of crustaceans in marine environments. Lipid plays major roles in energy supply and is main sources of essential fatty acids for membrane integrity, which is critical in adaptations to changes in salinity. Here we evaluated the effects of salinity (medium, 23 ppt and low, 4 ppt) and dietary lipid source (fish oil, FO and soybean oil, SO) on intestinal health of the marine crustacean mud crab Scylla paramamosain. The results indicated that low salinity and dietary SO (LSO group) significantly affected intestinal histomorphology, with a significant decrease of intestinal fold height and width as well as down-regulation of intestinal mRNA levels of tight junction genes compared to crab reared at medium salinity and fed FO diets (MFO group). Crabs reared at low salinity and fed SO showed an increased inflammatory response in intestine, which stimulated a physiological detoxification response together with apoptosis compared to crab in the MFO group. Low salinity and SO diets also could be responsible for multiply the pathogenic bacteria of Photobacterium and inhibit the beneficial bacteria of Firmicutes and Rhodobacteraceae in intestine, and act on a crucial impact on the development of intestinal microbial barrier disorders. The results of microbial function predictive analysis also support these inferences. The findings of the present study demonstrated that soybean oil as the main dietary lipid source could exacerbate the adverse effects of low salinity on intestinal health of mud crab, and provided evidence suggesting that dietary lipid source and fatty acid composition may play vital roles in intestinal health and the process of adaptation to environmental salinity in marine crustaceans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2021.112004DOI Listing
April 2021

Micronutrient supplementation affects transcriptional and epigenetic regulation of lipid metabolism in a dose-dependent manner.

Epigenetics 2020 Dec 31:1-18. Epub 2020 Dec 31.

Feed and Nutrition, Institute of Marine Research, Bergen, Norway.

Micronutrients (vitamins and minerals) have been less well studied compared to macronutrients (fats, proteins, and carbohydrates) although they play important roles in growth, metabolism, and maintenance of tissues. Hence, there is growing interest to understand the influence of micronutrients across various aspects in nutritional research. In the last two decades, aquaculture feeds have been shifted to containing more plant-based materials to meet the increasing demand and maintain the sustainability in the industry. A recent whole life cycle feeding trial of Atlantic salmon () with graded levels of micronutrient packages has concluded that the levels of several B-vitamins and microminerals need to be increased from the current recommendation levels for optimal growth and fish welfare when plant-based diets are used. Here, we show the effect of micronutrient supplementation on hepatic transcriptional and epigenetic regulation in a dose dependent manner. . Specifically, our aim is to reveal the mechanisms of altered cell metabolism, which results in improved growth performance by micronutrient surpluses, at gene expression and DNA methylation levels. Our results strongly indicate that micronutrient supplementation suppresses gene expression in lipid metabolism in a dose-dependent manner and broadly affects DNA methylation in cell-adhesion and cell-signalling. In particular, it increases DNA methylation levels on the promoter in a concentration-dependent manner, which further suggests that is an upstream epigenetic regulator controlling its downstream lipid biosynthesis activities. This study demonstrates a comprehensive analysis to reveal an important role of micronutrients in lipid metabolism through epigenetic control of gene expression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/15592294.2020.1859867DOI Listing
December 2020

Identification of miR-145 as a Key Regulator Involved in LC-PUFA Biosynthesis by Targeting α in the Marine Teleost .

J Agric Food Chem 2020 Dec 8;68(51):15123-15133. Epub 2020 Dec 8.

Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, 12595 Castellón, Spain.

Fish, particularly marine species, are considered as the major source of long-chain polyunsaturated fatty acids (LC-PUFA) in the human diet. The extent to which fish can synthesize LC-PUFA varies with species and is regulated by dietary fatty acids and ambient salinity. Therefore, to enable fish to produce more LC-PUFA, comprehending the mechanisms underlying the regulation of LC-PUFA biosynthesis is necessary. Here, the regulatory roles of miR-145 were investigated in the marine teleost rabbitfish . The hepatic abundance of miR-145 was lower in rabbitfish reared in low salinity (10 ppt) in comparison with that of those cultured in seawater (32 ppt), while the opposite pattern was observed for the transcripts of the transcription factor hepatocyte nuclear factor 4 alpha (Hnf4α), known to affect rabbitfish LC-PUFA biosynthesis. Rabbitfish α was identified as a target of miR-145 by luciferase reporter assays, and overexpression of miR-145 in the hepatocyte line (SCHL) markedly reduced the expression of Hnf4α and its target genes involved in LC-PUFA biosynthesis, namely, Δ4 , Δ6Δ5 , and . The opposite pattern was observed when miR-145 was knocked down in SCHL cells, with these effects being attenuated by subsequent α knockdown. Moreover, increasing endogenous Hnf4α by the knockdown of miR-145 increased the expression of LC-PUFA biosynthesis genes and enhanced the synthesis of LC-PUFA in both SCHL cells and rabbitfish in vivo. This is the first report to identify miR-145 as a key effector of LC-PUFA biosynthesis by targeting α, providing a novel insight into the mechanisms of the regulation of LC-PUFA biosynthesis in vertebrates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.0c04649DOI Listing
December 2020

Development of a C18 Supercritical Fluid Chromatography-Tandem Mass Spectrometry Methodology for the Analysis of Very-Long-Chain Polyunsaturated Fatty Acid Lipid Matrices and Its Application to Fish Oil Substitutes Derived from Genetically Modified Oilseeds in the Aquaculture Sector.

ACS Omega 2020 Sep 24;5(35):22289-22298. Epub 2020 Aug 24.

Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, U.K.

Lipidomics methodologies traditionally utilize either reverse phase- or hydrophilic interaction liquid chromatography-type separations; however, supercritical fluid chromatography can offer a rapid normal phase type separation while reducing the dependence on organic solvents. However, normal phase type lipid separations typically lack pronounced intraclass separation, which is problematic for complex lipidomes containing very-long-chain polyunsaturated fatty acids, especially those from genetically modified organisms. A high-strength silica C18 method was developed, which benefitted from discrete class separation, as well as displaying intraclass selectivity sufficient for profiling flesh of salmon fed with a diet supplemented with oil from the genetically engineered oilseed , a terrestrial oilseed with a fish oil-type profile. Salmon fed a diet containing this oil were found to have flesh enriched in triacylglycerols and phospholipids containing 18:3, 20:5, and 22:6, whereas salmon fed the control diet were differentiated by shorter chain plant-type fatty acids integrated within complex lipids. Coupled with active scanning quadrupole technology, data acquisition was enhanced, allowing for fragmentation data to be acquired in a data independent fashion, permitting acyl chain identification of resolved isomers. Therefore, we have developed a method, which is amenable for lipidomics studies of complex lipidomes, specifically those altered by synthetic biology approaches.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsomega.0c02631DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7482240PMC
September 2020

Dietary lipid and -3 long-chain PUFA levels impact growth performance and lipid metabolism of juvenile mud crab, .

Br J Nutr 2021 04 28;125(8):876-890. Epub 2020 Aug 28.

Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China.

An 8-week feeding trial was conducted to evaluate the effects of dietary n-3 LC-PUFA levels on growth performance, tissue fatty acid profiles and relative expression of genes involved in the lipid metabolism of mud crab (Scylla paramamosain). Ten isonitrogenous diets were formulated to contain five n-3 LC-PUFA levels at 7 and 12 % dietary lipid levels. The highest weight gain and specific growth rate were observed in crabs fed the diets with 19·8 and 13·2 mg/g n-3 LC-PUFA at 7 and 12 % lipid, respectively. Moisture and lipid contents in hepatopancreas and muscle were significantly influenced by dietary n-3 LC-PUFA at the two lipid levels. The DHA, EPA, n-3 LC-PUFA contents and n-3:n-6 PUFA ratio in hepatopancreas and muscle significantly increased as dietary n-3 LC-PUFA levels increased at both lipid levels. The expression levels of -6 fatty acyl desaturase and acyl-CoA oxidase in hepatopancreas increased significantly, and expression levels of fatty acid synthase, carnitine palmitoyltransferase I and hormone-sensitive TAG lipase were down-regulated, with increased dietary n-3 LC-PUFA regardless of lipid level. Based on weight gain, n-3 LC-PUFA requirements of S. paramamosain were estimated to be 20·1 and 12·7 mg/g of diet at 7 and 12 % dietary lipid, respectively. Overall, dietary lipid level influenced lipid metabolism, and purified, high-lipid diets rich in palmitic acid reduced the n-3 LC-PUFA requirement of juvenile mud crab.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114520003335DOI Listing
April 2021

miR-26a mediates LC-PUFA biosynthesis by targeting the Lxrα-Srebp1 pathway in the marine teleost .

J Biol Chem 2020 10 5;295(40):13875-13886. Epub 2020 Aug 5.

College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China. Electronic address:

MicroRNAs have been recently shown to be important regulators of lipid metabolism. However, the mechanisms of microRNA-mediated regulation of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis in vertebrates remain largely unknown. Herein, we for the first time addressed the role of miR-26a in LC-PUFA biosynthesis in the marine rabbitfish The results showed that miR-26a was significantly down-regulated in liver of rabbitfish reared in brackish water and in hepatocyte line (SCHL) incubated with the LC-PUFA precursor α-linolenic acid, suggesting that miR-26a may be involved in LC-PUFA biosynthesis because of its abundance being regulated by factors affecting LC-PUFA biosynthesis. Opposite patterns were observed in the expression of liver X receptor α (α) and sterol regulatory element-binding protein-1 (), as well as the LC-PUFA biosynthesis-related genes (Δ4 , Δ6Δ5 , and ) in SCHL cells incubated with α-linolenic acid. Luciferase reporter assays revealed rabbitfish α as a target of miR-26a, and overexpression of miR-26a in SCHL cells markedly reduced protein levels of Lxrα, Srebp1, and Δ6Δ5 Fads2 induced by the agonist T0901317. Moreover, increasing endogenous Lxrα by knockdown of miR-26a facilitated Srebp1 activation and concomitant increased expression of genes involved in LC-PUFA biosynthesis and consequently promoted LC-PUFA biosynthesis both and These results indicate a critical role of miR-26a in regulating LC-PUFA biosynthesis through targeting the Lxrα-Srebp1 pathway and provide new insights into the regulatory network controlling LC-PUFA biosynthesis and accumulation in vertebrates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.RA120.014858DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7535907PMC
October 2020

The miR-15/16 Cluster Is Involved in the Regulation of Vertebrate LC-PUFA Biosynthesis by Targeting pparγ as Demonostrated in Rabbitfish Siganus canaliculatus.

Mar Biotechnol (NY) 2020 Aug 16;22(4):475-487. Epub 2020 May 16.

School of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.

Post-transcriptional regulatory mechanisms play important roles in the regulation of long-chain (≥ C) polyunsaturated fatty acid (LC-PUFA) biosynthesis. Here, we address a potentially important role of the miR-15/16 cluster in the regulation of LC-PUFA biosynthesis in rabbitfish Siganus canaliculatus. In rabbitfish, miR-15 and miR-16 were both highly responsive to fatty acids affecting LC-PUFA biosynthesis and displayed a similar expression pattern in a range of rabbitfish tissues. A common potential binding site for miR-15 and miR-16 was predicted in the 3'UTR of peroxisome proliferator-activated receptor gamma (pparγ), an inhibitor of LC-PUFA biosynthesis in rabbitfish, and luciferase reporter assays revealed that pparγ was a potential target of miR-15/16 cluster. In vitro individual or co-overexpression of miR-15 and miR-16 in rabbitfish hepatocyte line (SCHL) inhibited both mRNA and protein levels of Pparγ, and increased the mRNA levels of Δ6Δ5 fads2, Δ4 fads2, and elovl5, key enzymes of LC-PUFA biosynthesis. Inhibition of pparγ was more pronounced with co-overexpression of miR-15 and miR-16 than with individual overexpression in SCHL. Knockdown of miR-15/16 cluster gave opposite results, and increased mRNA levels of LC-PUFA biosynthesis enzymes were observed after knockdown of pparγ. Furthermore, miR-15/16 cluster overexpression significantly increased the contents of 22:6n-3, 20:4n-6 and total LC-PUFA in SCHL with higher 18:4n-3/18:3n-3 and 22:6n-3/22:5n-3 ratio. These suggested that miR-15 and miR-16 as a miRNA cluster together enhanced LC-PUFA biosynthesis by targeting pparγ in rabbitfish. This is the first report of the participation of miR-15/16 cluster in LC-PUFA biosynthesis in vertebrates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10126-020-09969-0DOI Listing
August 2020

Effects of dietary zinc level on growth performance, lipolysis and expression of genes involved in the calcium/calmodulin-dependent protein kinase kinase-β/AMP-activated protein kinase pathway in juvenile Pacific white shrimp.

Br J Nutr 2020 10 15;124(8):773-784. Epub 2020 May 15.

Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China.

The present study evaluated the effects of dietary Zn level on growth performance, serum and hepatopancreas metabolites, expression of genes involved in lipid and energy metabolism, and the signalling pathway of dietary Zn-induced lipolysis. Five isonitrogenous and isolipidic diets were formulated to contain different Zn levels: 46·4 (basal diet), 77·2, 87·0, 117·1 and 136·8 mg/kg, respectively. The results indicated that shrimp fed the diet containing Zn at 117·1 mg/kg had higher weight gain and specific growth rate, and the lowest feed intake and feed conversion rate, than shrimp fed the other diets. The deposition rate of Zn in whole body significantly decreased with increasing dietary Zn level. Dietary Zn prevented the accumulation of free radicals and improved antioxidant activities by increasing Cu/Zn superoxide dismutase and reducing malondialdehyde in hepatopancreas. Dietary Zn supplementation enhanced lipase activity and adiponectin, which could promote TAG breakdown and fatty acid oxidation and lead to reduced lipid in hepatopancreas. The mRNA expressions of ob-rb, adipor, camkkβ, ampk, cd36, mcd and cpt1 involved in Zn-induced lipid catabolism were up-regulated, and the expressions of srebp, acc, fas and scd1 were down-regulated. The mRNA levels of SLC39 family genes (zip3, zip9, zip11 and zip14) in hepatopancreas were up-regulated with increasing dietary Zn level. The results demonstrated that dietary Zn level could significantly affect growth performance, tissue deposition of Zn, lipid metabolites and expression of genes involved in lipogenesis and lipolysis in Litopenaeus vannamei.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114520001725DOI Listing
October 2020

Influence of dietary zinc on growth, zinc bioaccumulation and expression of genes involved in antioxidant and innate immune in juvenile mud crabs ().

Br J Nutr 2020 10 4;124(7):681-692. Epub 2020 May 4.

Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China.

The aim of the present study was to investigate the effects of dietary Zn level on growth performance, Zn bioaccumulation, antioxidant capacity and innate immunity in juvenile mud crabs (Scylla paramamosain). Six semi-purified diets were formulated to contain dietary Zn levels of 44·5, 56·9, 68·5, 97·3, 155·6 or 254·7 mg/kg. Dietary Zn level significantly influenced percentage weight gain (PWG), with the highest observed in crabs fed the diet containing 97·3 mg/kg Zn. Tissue Zn concentrations significantly increased as dietary Zn levels increased from 44·5 to 254·7 mg/kg. Retention of Zn in hepatopancreas increased with dietary Zn levels up to 68·5 mg/kg and then significantly decreased. Moreover, inadequate dietary Zn (44·5 and 56·9 mg/kg) reduced antioxidation markers including total superoxide dismutase (SOD) and Cu/Zn SOD activities and total antioxidant level. Crabs fed the diet with 44·5 mg/kg Zn also showed significantly lower expression of genes involved in antioxidant status, such as Cu/Zn SOD, glutathione peroxidase, catalase and thioredoxin than those fed diets containing 68·5 and 97·3 mg/kg Zn. The highest activities of phenoloxidase and alkaline phosphatase were recorded in crabs fed the diets containing 68·5 and 97·3 mg/kg Zn. Expression levels of prophenoloxidase and toll-like receptor 2 were higher in crabs fed the 97·3 mg/kg Zn diet compared with crabs fed the other diets. Based on PWG alone, the optimal dietary Zn level was estimated to be 82·9 mg/kg, with 68·5 to 97·3 mg/kg recommended for maintaining optimal Zn bioaccumulation, oxidation resistance and innate immune response of juvenile mud crabs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114520001531DOI Listing
October 2020

No transfer of the non-regulated mycotoxins, beauvericin and enniatins, from feeds to farmed fish reared on plant-based diets.

Food Chem 2020 Apr 10;323:126773. Epub 2020 Apr 10.

Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, United Kingdom.

Concern about the risk of exposure to emerging plant-derived mycotoxins such as beauvericin and enniatins has been addressed by the European Commission who requested the European Food Safety Authority for a scientific opinion on their risk to human and animal health. The studied mycotoxins were found in feeds with enniatin B and beauvericin at average concentrations of 19.9 μg/kg and 30 μg/kg, respectively. In all cases, concentrations of all the mycotoxins analyzed were below quantification limits (<0.1 μg/kg) in fish samples (n = 82). The present work provides comprehensive and traceable data of emerging mycotoxins in plant-based aquafeeds and fish reared on the feeds, responding to increasing concerns about safety of farmed fish fed on sustainable feeds. On the basis of data reported, there was no transfer of the emerging mycotoxins, beauvericin and enniatins, from feeds to fish and so, no risk for human consumption.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2020.126773DOI Listing
April 2020

Toxicological mechanism of excessive copper supplementation: Effects on coloration, copper bioaccumulation and oxidation resistance in mud crab Scylla paramamosain.

J Hazard Mater 2020 08 2;395:122600. Epub 2020 Apr 2.

Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China. Electronic address:

Copper is a widespread pollutant in marine environments, and marine animals can ingest large amounts of copper through the food chain. Here, an 8-week feeding trial was designed to investigate the effects of different dietary copper levels on coloration, copper bioaccumulation, stress response and oxidation resistance of juvenile mud crab Scylla paramamosain. The results indicated that crabs fed the diet with 162 mg/kg copper exhibited a dark-blue carapace and hemolymph. The accumulation of copper in tissues was positively correlated with the level of copper in feed. High/excess dietary copper (162 mg/kg) up-regulated the expression of stress response related genes, and reduced the expression/activities of anti-oxidation genes/enzymes. The activity of phenoloxidase decreased significantly when dietary copper level was 86-162 mg/kg, and the expression of hemocyanin was up-regulated in crab fed the diets with 28-162 mg/kg copper. Overall, the results of the present study indicated that high dietary copper led to parachrea in carapace and hemolymph of mud crab, and caused copper deposition abnormality in carapace and hepatopancreas. The data suggested that the toxic effects of dietary copper were concentration-dependent such that, excess dietary copper (162 mg/kg) had adverse impacts on oxidation resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.122600DOI Listing
August 2020

Dietary fenofibrate attenuated high-fat-diet-induced lipid accumulation and inflammation response partly through regulation of pparα and sirt1 in juvenile black seabream (Acanthopagrus schlegelii).

Dev Comp Immunol 2020 08 3;109:103691. Epub 2020 Apr 3.

Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China. Electronic address:

An 8-week feeding trail was conducted in Acanthopagrus schlegelii with an initial body weight of 8.34 ± 0.01g. Three isonitrogenous diets were formulated, (1) Control: medium-fat diet (12%); (2) HFD: high-fat diet (18%); (3) HFD + FF: high-fat diet with fenofibrate (0.15%). Liver histological analysis revealed that, compared to HFD, vacuolar fat drops were smaller and fewer in fish fed fenofibrate. Expression of lipid catabolism regulator peroxisome proliferator-activated receptor alpha (pparα) was up-regulated by fenofibrate compared with HFD. In addition, fenofibrate significantly increased the expression level of silent information regulator 1 (sirt1). Meanwhile, the expression level of anti-inflammatory cytokine interleukin 10 (il-10) in intestine was up-regulated, while pro-inflammatory cytokine interleukin 1β (il-1β) in liver and intestine were down-regulated by dietary fenofibrate supplementation. Overall, the present study indicated that fenofibrate reduced fat deposition and attenuated inflammation response caused by HFD partly through a pathway involving regulation of pparα and sirt1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2020.103691DOI Listing
August 2020

Dietary choline supplementation attenuated high-fat diet-induced inflammation through regulation of lipid metabolism and suppression of NFκB activation in juvenile black seabream ().

J Nutr Sci 2019 11 22;8:e38. Epub 2019 Nov 22.

Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, People's Republic of China.

The present study aimed to investigate whether dietary choline can regulate lipid metabolism and suppress NFκB activation and, consequently, attenuate inflammation induced by a high-fat diet in black sea bream (). An 8-week feeding trial was conducted on fish with an initial weight of 8·16 ± 0·01 g. Five diets were formulated: control, low-fat diet (11 %); HFD, high-fat diet (17 %); and HFD supplemented with graded levels of choline (3, 6 or 12 g/kg) termed HFD + C1, HFD + C2 and HFD + C3, respectively. Dietary choline decreased lipid content in whole body and tissues. Highest TAG and cholesterol concentrations in serum and liver were recorded in fish fed the HFD. Similarly, compared with fish fed the HFD, dietary choline reduced vacuolar fat drops and ameliorated HFD-induced pathological changes in liver. Expression of genes of lipolysis pathways were up-regulated, and genes of lipogenesis down-regulated, by dietary choline compared with fish fed the HFD. Expression of and pro-inflammatory cytokines in liver and intestine was suppressed by choline supplementation, whereas expression of anti-inflammatory cytokines was promoted in fish fed choline-supplemented diets. In fish that received lipopolysaccharide to stimulate inflammatory responses, the expression of and pro-inflammatory cytokines in liver, intestine and kidney were all down-regulated by dietary choline compared with the HFD. Overall, the present study indicated that dietary choline had a lipid-lowering effect, which could protect the liver by regulating intrahepatic lipid metabolism, reducing lipid droplet accumulation and suppressing NFκB activation, consequently attenuating HFD-induced inflammation in .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/jns.2019.34DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984006PMC
November 2019

The catadromous teleost Anguilla japonica has a complete enzymatic repertoire for the biosynthesis of docosahexaenoic acid from α-linolenic acid: Cloning and functional characterization of an Elovl2 elongase.

Comp Biochem Physiol B Biochem Mol Biol 2020 Feb 31;240:110373. Epub 2019 Oct 31.

Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; College of Marine Sciences, South China Agriculture University, Guangzhou 510642, China. Electronic address:

The Japanese eel Anguilla japonica is a catadromous fish species with considerable farming scale. Previous studies showed that dietary α-linolenic acid (18:3n-3) and linoleic acid (18:2n-6) satisfied essential fatty acid requirements in eel, which suggested that Japanese eel should have a complete pathway for the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFA). However, existing knowledge was insufficient to explain the molecular basis of LC-PUFA biosynthetic capacity in eel. In order to further characterize this pathway in eel, a full-length cDNA of a putative fatty acyl elongase was isolated, with the ORF encoding a protein with 294 amino acids. The putative elongase displayed high homology to Elovl2 of other teleosts. Functional characterization by heterologous expression in yeast showed the protein product of the cDNA had high activity towards C and C PUFA substrates and low activity towards C PUFA substrates, characteristic of Elovl2 elongases. Tissue distribution of the elovl2 mRNA showed highest expression in brain and eyes, which was different from freshwater and anadromous species. This may reflect an important role for this enzyme in the in situ endogenous biosynthesis of docosahexaenoic acid (DHA) in neural tissues in eel. This is the first report of an Elovl2 in a catadromous teleost and demonstrates that Japanese eel has a complete enzyme repertoire required for the endogenous biosynthesis of DHA via the Sprecher pathway. These data have increased our knowledge of the diversity of LC-PUFA biosynthesis in vertebrates, and provided further insight into the regulatory mechanisms of LC-PUFA biosynthesis in teleost fish.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2019.110373DOI Listing
February 2020

Modification of nutritional values and flavor qualities of muscle of swimming crab (Portunus trituberculatus): Application of a dietary lipid nutrition strategy.

Food Chem 2020 Mar 15;308:125607. Epub 2019 Oct 15.

Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China. Electronic address:

Lipid sources as alternatives to fish oil could alter the nutritional value and flavor quality of crab meat affecting consumer preferences. Herein, an 8-week nutritional trial was designed to investigate the effects of dietary lipid sources including fish oil (FO), krill oil (KO), palm oil, rapeseed oil, soybean oil and linseed oil on profiles of amino acids, fatty acids and volatiles in muscle of swimming crab (Portunus trituberculatus). Volatiles of crab muscle were characterized by headspace solid-phase microextraction and gas chromatography-tandem mass spectrometry. Results revealed that crabs fed FO and KO had significantly higher levels of protein, indispensable amino acids, eicosapentaenoic acid and docosahexaenoic acid in muscle. Principal component analysis and hierarchical cluster analysis demonstrated that muscle volatiles of crabs fed different dietary oils exhibited significant variations. Dietary FO and KO significantly increased the relative levels of 3-methylbutanal, heptanal, benzaldehyde and nonanal in muscle, which may produce more pleasant flavors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2019.125607DOI Listing
March 2020

Molecular and functional characterisation of a putative elovl4 gene and its expression in response to dietary fatty acid profile in Atlantic bluefin tuna (Thunnus thynnus).

Comp Biochem Physiol B Biochem Mol Biol 2020 Feb 24;240:110372. Epub 2019 Oct 24.

Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain.

Elongation of very long-chain fatty acid 4 (Elovl4) proteins are involved in the biosynthesis of very long-chain (>C) fatty acids and in many teleost fish species they are key enzymes in the pathway for the production of docosahexaenoic acid (DHA; 22:6n-3) from eicosapentaenoic acid (EPA; 20:5n-3). Therefore, Elovl4 may be particularly important in Atlantic bluefin tuna (ABT; Thunnus thynnus) characterised by having high DHA to EPA ratios. The present study cloned and characterised both the function and expression of an elovl4 cDNA from ABT. The Elovl4 had an open reading frame of 915 base pairs encoding a putative protein of 304 amino acids. Alignment and phylogenetic analyses indicated that the Elovl4 isoform identified in the present study was an Elovl4b. Functional characterisation demonstrated that the Elovl4b enzyme had elongase activity towards all the polyunsaturated fatty acid (PUFA) substrates assayed. The ABT Elovl4b contributed to DHA biosynthesis by elongation of EPA and DPA to 24:5n-3, the latter being desaturated to 24:6n-3 by the action of fads2 (Δ6 desaturase). Additionally, the ABT Elovl4b has a role in the biosynthesis of very long-chain PUFA up to C, compounds of key structural roles in neural tissues such as eye and brain, which had high levels of elovl4b transcripts. Surprisingly, while the relative expression of fads2, required for the production of DHA from EPA, was increased in liver of ABT fed a diet with reduced levels of EPA and DHA, expression of elovl4b was reduced. Results indicated that ABT has enzymes necessary for endogenous production of DHA from EPA and demonstrate that Elovl4b can effectively compensate for absence of Elovl2.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2019.110372DOI Listing
February 2020

Sp1 is Involved in Vertebrate LC-PUFA Biosynthesis by Upregulating the Expression of Liver Desaturase and Elongase Genes.

Int J Mol Sci 2019 Oct 12;20(20). Epub 2019 Oct 12.

Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.

The rabbitfish was the first marine teleost demonstrated to have the ability for the biosynthesis of long-chain (≥C20) polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors, and all the catalytic enzymes including two fatty acyl desaturase 2 (Δ4 Fads2 and Δ6/Δ5 Fads2) and two elongases (Elovl4 and Elovl5) have been identified, providing a good model for studying the regulatory mechanisms of LC-PUFA biosynthesis in fish. Stimulatory protein 1 (Sp1) has been speculated to be a vital transcription factor in determining the promoter activity of Fads-like genes in fish, however its regulatory effects on gene expression and LC-PUFA biosynthesis have not been demonstrated. Bioinformatic analysis predicted potential Sp1 binding sites in the promoters of the rabbitfish Δ6/Δ5 and , but not in Δ4 promoter. Here we cloned full-length cDNA of the rabbitfish gene, which encoded a putative protein of 701 amino acids, and was expressed in all tissues studied with highest levels in gill and eyes. The dual luciferase reporter assay in HepG2 line cells demonstrated the importance of the Sp1 binding site for the promoter activities of both Δ6/Δ5 and . Moreover, the electrophoretic mobility shift assay confirmed the direct interaction of Sp1 with the two promoters. Insertion of the Sp1 binding site of Δ6/Δ5 promoter into the corresponding region of the Δ4 promoter significantly increased activity of the latter. In the hepatocyte line (SCHL) cells, mRNA levels of Δ6/Δ5 and were positively correlated with the expression of when was overexpressed or knocked-down by RNAi or antagonist (mithramycin) treatment. Moreover, overexpression of also led to a higher conversion of 18:2n-6 to 18:3n-6, 18:2n-6 to 20:2n-6, and 18:3n-3 to 20:3n-3, which related to the functions of Δ6/Δ5 Fads2 and Elovl5, respectively. These results indicated that Sp1 is involved in the transcriptional regulation of LC-PUFA biosynthesis by directly targeting Δ6/Δ5 and in rabbitfish, which is the first report of Sp1 involvement in the regulation of LC-PUFA biosynthesis in vertebrates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms20205066DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6829471PMC
October 2019

Effects of dietary lipid level on growth, fatty acid profiles, antioxidant capacity and expression of genes involved in lipid metabolism in juvenile swimming crab, .

Br J Nutr 2020 01;123(2):149-160

Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, People's Republic of China.

The regulation of lipogenesis and lipolysis mechanisms related to consumption of lipid has not been studied in swimming crab. The aims of the present study were to evaluate the effects of dietary lipid levels on growth, enzymes activities and expression of genes of lipid metabolism in hepatopancreas of juvenile swimming crab. Three isonitrogenous diets were formulated to contain crude lipid levels at 5·8, 9·9 and 15·1 %. Crabs fed the diet containing 15·1 % lipid had significantly lower growth performance and feed utilisation than those fed the 5·8 and 9·9 % lipid diets. Crabs fed 5·8 % lipid had lower malondialdehyde concentrations in the haemolymph and hepatopancreas than those fed the other diets. Highest glutathione peroxidase in haemolymph and superoxide dismutase in hepatopancreas were observed in crabs fed 5·8 % lipid. The lowest fatty acid synthase and glucose 6-phosphate dehydrogenase activities in hepatopancreas were observed in crabs fed 15·1 % lipid, whereas crabs fed 5·8 % lipid had lower carnitine palmitoyltransferase-1 activity than those fed the other diets. Crabs fed 15·1 % lipid showed lower hepatopancreas expression of genes involved in long-chain-PUFA biosynthesis, lipoprotein clearance, fatty acid uptake, fatty acid oxidation, lipid anabolism and lipid catabolism than those fed the other diets, whereas expression of some genes of lipoprotein assembly and fatty acid oxidation was up-regulated compared with crabs fed 5·8 % lipid. Overall, high dietary lipid level can inhibit growth, reduce antioxidant enzyme activities and influence lipid metabolic pathways to regulate lipid deposition in crab.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114519002563DOI Listing
January 2020

Enhanced micronutrient supplementation in low marine diets reduced vertebral malformation in diploid and triploid Atlantic salmon (Salmo salar) parr, and increased vertebral expression of bone biomarker genes in diploids.

Comp Biochem Physiol B Biochem Mol Biol 2019 Nov 25;237:110327. Epub 2019 Aug 25.

Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK. Electronic address:

Previously we showed that, for optimum growth, micronutrient levels should be supplemented above current National Research Council (2011) recommendations for Atlantic salmon when they are fed diets formulated with low levels of marine ingredients. In the present study, the impact of graded levels (100, 200, 400%) of a micronutrient package (NP) on vertebral deformities and bone gene expression were determined in diploid and triploid salmon parr fed low marine diets. The prevalence of radiologically detectable spinal deformities decreased with increasing micronutrient supplementation in both ploidy. On average, triploids had a higher incidence of spinal deformity than diploids within a given diet. Micronutrient supplementation particularly reduced prevalence of fusion deformities in diploids and compression and reduced spacing deformities in triploids. Prevalence of affected vertebrae within each spinal region (cranial, caudal, tail and tail fin) varied significantly between diet and ploidy, and there was interaction. Prevalence of deformities was greatest in the caudal region of triploids and the impact of graded micronutrient supplementation in reducing deformities also greatest in triploids. Diet affected vertebral morphology with length:height (L:H) ratio generally increasing with level of micronutrient supplementation in both ploidy with no difference between ploidy. Increased dietary micronutrients level in diploid salmon increased the vertebral expression of several bone biomarker genes including bone morphogenetic protein 2 (bmp2), osteocalcin (ostcn), alkaline phosphatase (alp), matrix metallopeptidase 13 (mmp13), osteopontin (opn) and insulin-like growth factor 1 receptor (igf1r). In contrast, although some genes showed similar trends in triploids, vertebral gene expression was not significantly affected by dietary micronutrients level. The study confirmed earlier indications that dietary micronutrient levels should be increased in salmon fed diets with low marine ingredients and that there are differences in nutritional requirements between ploidies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2019.110327DOI Listing
November 2019

Endogenous production of -3 long-chain PUFA from first feeding and the influence of dietary linoleic acid and the -linolenic:linoleic ratio in Atlantic salmon ().

Br J Nutr 2019 11 14;122(10):1091-1102. Epub 2019 Aug 14.

Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.

Atlantic salmon (Salmo salar) possess enzymes required for the endogenous biosynthesis of n-3 long-chain PUFA (LC-PUFA), EPA and DHA, from α-linolenic acid (ALA). Linoleic acid (LA) competes with ALA for LC-PUFA biosynthesis enzymes leading to the production of n-6 LC-PUFA, including arachidonic acid (ARA). We aimed to quantify the endogenous production of EPA and DHA from ALA in salmon fed from first feeding on diets that contain no EPA and DHA and to determine the influence of dietary LA and ALA:LA ratio on LC-PUFA production. Salmon were fed from first feeding for 22 weeks with three diets formulated with linseed and sunflower oils to provide ALA:LA ratios of approximately 3:1, 1:1 and 1:3. Endogenous production of n-3 LC-PUFA was 5·9, 4·4 and 2·8 mg per g fish and that of n-6 LC-PUFA was 0·2, 0·5 and 1·4 mg per g fish in salmon fed diets with ALA:LA ratios of 3:1, 1:1 and 1:3, respectively. The ratio of n-3:n-6 LC-PUFA production decreased from 27·4 to 2·0, and DHA:EPA ratio increased and EPA:ARA and DHA:ARA ratios decreased, as dietary ALA:LA ratio decreased. In conclusion, with a dietary ALA:LA ratio of 1, salmon fry/parr produced about 28 μg n-3 LC-PUFA per g fish per d, with a DHA:EPA ratio of 3·4. Production of n-3 LC-PUFA exceeded that of n-6 LC-PUFA by almost 9-fold. Reducing the dietary ALA:LA ratio reduced n-3 LC-PUFA production and EPA:ARA and DHA:ARA ratios but increased n-6 LC-PUFA production and DHA:EPA ratio.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114519001946DOI Listing
November 2019

Functional diversification of teleost Fads2 fatty acyl desaturases occurs independently of the trophic level.

Sci Rep 2019 08 1;9(1):11199. Epub 2019 Aug 1.

Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain.

The long-chain (≥C) polyunsaturated fatty acid biosynthesis capacity of fish varies among species, with trophic level hypothesised as a major factor. The biosynthesis capacity is largely dependent upon the presence of functionally diversified fatty acyl desaturase 2 (Fads2) enzymes, since many teleosts have lost the gene encoding a Δ5 desaturase (Fads1). The present study aimed to characterise Fads2 from four teleosts occupying different trophic levels, namely Sarpa salpa, Chelon labrosus, Pegusa lascaris and Atherina presbyter, which were selected based on available data on functions of Fads2 from closely related species. Therefore, we had insight into the variability of Fads2 within the same phylogenetic group. Our results showed that Fads2 from S. salpa and C. labrosus were both Δ6 desaturases with further Δ8 activity while P. lascaris and A. presbyter Fads2 showed Δ4 activity. Fads2 activities of herbivorous S. salpa are consistent with those reported for carnivorous Sparidae species. The results suggested that trophic level might not directly drive diversification of teleost Fads2 as initially hypothesised, and other factors such as the species' phylogeny appeared to be more influential. In agreement, Fads2 activities from P. lascaris and A. presbyter were similar to their corresponding phylogenetic counterparts Solea senegalensis and Chirostoma estor.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-47709-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6671994PMC
August 2019

MicroRNAs Involved in the Regulation of LC-PUFA Biosynthesis in Teleosts: miR-33 Enhances LC-PUFA Biosynthesis in Siganus canaliculatus by Targeting insig1 which in Turn Upregulates srebp1.

Mar Biotechnol (NY) 2019 Aug 24;21(4):475-487. Epub 2019 Apr 24.

School of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.

Post-transcriptional regulatory mechanisms play important roles in the regulation of LC-PUFA biosynthesis. Our previous study revealed that miR-33 could increase the expression of fatty acyl desaturases (fads2) in the rabbitfish Siganus canaliculatus, but the specific mechanism is unknown. Here, we confirmed that miR-33 could target the 3'UTR of insulin-induced gene 1 (insig1), resulting in downregulation of its protein level in the rabbitfish hepatocyte line (SCHL). In vitro overexpression of miR-33 inhibited the mRNA level of insig1 and increased the mRNA levels of Δ6Δ5 fads2 and elovl5, as well as srebp1. In SCHL cells, proteolytic activation of sterol-regulatory-element-binding protein-1 (Srebp1) was blocked by Insig1, with overexpression of insig1 decreasing mature Srebp1 level, while inhibition of insig1 led to the opposite effect. Srebp1 could enhance the promoter activity of Δ6Δ5 fads2 and elovl5, whose expression levels decreased with knockdown of srebp1 in SCHL. Overexpression of miR-33 also resulted in a higher conversion of 18:3n-3 to 18:4n-3 and 20:5n-3 to 22:5n-3, linked to desaturation and elongation via Δ6Δ5 Fads2 and Elovl5, respectively. The results suggested that the mechanism by which miR-33 regulates LC-PUFA biosynthesis in rabbitfish is through enhancing the expression of srebp1 by targeting insig1. The findings here provide more insight to the mechanism of miRNAs involvement in the regulation of LC-PUFA biosynthesis in teleosts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10126-019-09895-wDOI Listing
August 2019

Biosynthesis of long-chain polyunsaturated fatty acids in the razor clam Sinonovacula constricta: Characterization of four fatty acyl elongases and a novel desaturase capacity.

Biochim Biophys Acta Mol Cell Biol Lipids 2019 08 16;1864(8):1083-1090. Epub 2019 Apr 16.

Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, Zhejiang 315211, China. Electronic address:

As an unusual economically important aquaculture species, Sinonovacula constricta possesses high levels of long-chain polyunsaturated fatty acids (LC-PUFA). Previously, our group identified fatty acyl desaturases (Fad) with Δ5 and Δ6 activities in S. constricta, which was the first report of Δ6 Fad in a marine mollusc. Here, we further successfully characterize elongases of very long-chain fatty acids (Elovl) in this important bivalve species, including one Elovl2/5, two Elovl4 isoforms (a and b) and a novel Elovl (c) with Elovl4 activity. In addition, we also determined the desaturation activity of S. constricta Δ6 Fad toward 24:5n-3 to give 24:6n-3, a key intermediate in docosahexaenoic acid (DHA) biosynthesis. Therefore, S. constricta is the first marine mollusc reported to possess all Fad and Elovl activities required for LC-PUFA biosynthesis via the 'Sprecher pathway'. This finding greatly increases our understanding of LC-PUFA biosynthesis in marine molluscs. Phylogenetic analysis by interrogating six marine molluscan genomes, and previously functionally characterized Elovl and Fad from marine molluscs, suggested that DHA biosynthetic ability was limited to a few species, due to the general lack of Δ4 or Δ6 Fad in most molluscs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2019.04.004DOI Listing
August 2019

miR-24 is involved in vertebrate LC-PUFA biosynthesis as demonstrated in marine teleost Siganus canaliculatus.

Biochim Biophys Acta Mol Cell Biol Lipids 2019 05 23;1864(5):619-628. Epub 2019 Jan 23.

College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Recently, microRNAs (miRNAs) have emerged as crucial regulators of lipid metabolism. However, the miRNA-mediated regulatory mechanism on long-chain (≥C) polyunsaturated fatty acids (LC-PUFA) biosynthesis in vertebrates remains largely unknown. Here, we address a potentially important role of miRNA-24 (miR-24) in the regulation of LC-PUFA biosynthesis in rabbitfish Siganus canaliculatus. miR-24 showed significantly higher abundance in liver of rabbitfish reared in brackish water than in seawater for fish fed vegetable oil diets and in S. canaliculatus hepatocyte line (SCHL) cells incubated with alpha-linolenic acid (ALA) than the control group. Similar expression patterns were also observed on the expression of sterol regulatory element-binding protein-1 (srebp1) and LC-PUFA biosynthesis related genes. While opposite results were observed on the expression of insulin-induced gene 1 (insig1), an endoplasmic reticulum membrane protein blocking Srebp1 proteolytic activation. Luciferase reporter assays revealed rabbitfish insig1 as a target of miR-24. Knockdown of miR-24 in SCHL cells resulted in increased Insig1 protein, and subsequently reduced mature Srebp1 protein and expression of genes required for LC-PUFA biosynthesis, and these effects could be attenuated after additional insig1 knockdown. Opposite results were observed with overexpression of miR-24. Moreover, increasing endogenous insig1 by knockdown of miR-24 inhibited Srebp1 processing and consequently suppressed LC-PUFA biosynthesis in rabbitfish hepatocytes. These results indicate a potentially critical role for miR-24 in regulating LC-PUFA biosynthesis through the Insig1/Srebp1 pathway by targeting insig1. This is the first report of miR-24 involved in LC-PUFA biosynthesis and thus may provide knowledge on the regulatory mechanisms of LC-PUFA biosynthesis in vertebrates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2019.01.010DOI Listing
May 2019

Omega-3 Long-Chain Polyunsaturated Fatty Acids, EPA and DHA: Bridging the Gap between Supply and Demand.

Nutrients 2019 Jan 4;11(1). Epub 2019 Jan 4.

Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK.

The omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA), eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic (DHA, 22:6n-3) acids, are well accepted as being essential components of a healthy, balanced diet, having beneficial effects on development and in mitigating a range of pathological conditions. However, their global supply from all the traditional sources of these nutrients is insufficient to satisfy human nutritional requirements. For two decades there has been considerable research carried out into all possible alternatives to the main sources of n-3 LC-PUFA, marine fish oil and fishmeal, driven largely by the aquaculture sector, as both the major user and provider of EPA and DHA. In the last few years these efforts have focused increasingly on the development of entirely new supplies of n-3 LC-PUFA produced . Recently, this has resulted in various new sources of EPA and/or DHA that are already available or likely to available in the near future. In this short review, we briefly summaries the current gap between supply and demand of EPA and DHA for human requirements, the role of aquaculture in providing n-3 LC-PUFA to human consumers, the range of potential novel sources, and suggest how these new products could be used effectively. We conclude that all the new sources have potentially important roles to play in increasing the supply of n-3 LC-PUFA so that they are available more widely and in higher concentrations providing more options and opportunities for human consumers to obtain sufficient EPA and DHA to support more healthy, balanced diets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu11010089DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356973PMC
January 2019
-->