Publications by authors named "Doudou Gao"

4 Publications

  • Page 1 of 1

Multiple roles of Ca in the interaction of ciprofloxacin with activated sludge: Spectroscopic investigations of extracellular polymeric substances.

Sci Total Environ 2021 Jan 7;751:142246. Epub 2020 Sep 7.

Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China. Electronic address:

Calcium ion is an important cation influencing the binding of recalcitrant organic contaminants with activated sludge during wastewater treatment process, but there is still unknown about its role in amphoteric fluoroquinolones binding. Binding experiments show that Ca markedly inhibited binding of ciprofloxacin (CIP) onto sludge, causing 7-203 times of CIP release. Multi-spectroscopic examinations indicate that tryptophan-like and tyrosine-like proteins in extracellular polymeric substances (EPS) were dominant components for CIP binding by static quenching and forming CIP-proteins complexes. Addition of Ca into EPS and CIP binding systems induced increase of association constants (from 0.024-0.064 to 0.027-0.084 L/μmol) and binding constants (from 0.002-0.039 to 0.012-0.107) and decrease of binding sites number (from 0.893-2.007 to 0.721-1.386). Functional groups of EPS and secondary structure of proteins were remarkably changed upon reactions with CIP and Ca. Calcium ion interacted with EPS and CIP binding system in two distinct ways: Ca shielded CO in amide I in EPS for CIP binding, whereas strengthened binding between CIP and functional groups including CO in carboxyl groups in extra-microcolony polymers and OH in extra-cellular polymers by forming ternary complexes. Cation competition for CO in amide I is responsible for Ca induced CIP release from the sludge. Results suggest the highly potential release of CIP from high saline wastewater and cation-conditioned sludge which needs further monitoring and evaluation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.142246DOI Listing
January 2021

Synthesis of Ni/NiO@MIL-101(Cr) Composite as Novel Anode for Lithium-Ion Battery Application.

J Nanosci Nanotechnol 2019 Dec;19(12):8063-8070

Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan, 430062, China.

The poor conductivity is one of the prime reasons restricted MOFs to be applied in the lithium-ion battery system. For the sake of ameliorate this issue, the Ni/NiO was well loaded on the surface of Cr-based metal organic frameworks (MIL-101) by solution impregnation and reduction method to form Ni/NiO@MIL-101(Cr) composites. The as-synthesized Ni/NiO@MIL-101(Cr) was characterized by X-ray powder diffractions, X-ray photoelectron spectroscopy, field emission scanning electron microscope and transmission electron microscope techniques. When used as anode for LIBs, the Ni/NiO@MIL-101(Cr) composite exhibited high reversible capacity (891 mAh g after 100 cycles at a current density of 200 mA g) and stable cycle performance, the coulombic efficiency can maintain in the whole cycle above 95.0%. The reasons for that Ni/NiO@MIL-101(Cr) behaved outstanding electrochemical properties were discussed also. The Ni/NiO@MIL-101(Cr) can be used as promising material for lithium-ion battery application.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2019.16763DOI Listing
December 2019

Preparation of thermo/redox/pH-stimulative poly(N-isopropylacrylamide-co-N,N'-dimethylaminoethyl methacrylate) nanogels and their DOX release behaviors.

J Biomed Mater Res A 2019 06 31;107(6):1195-1203. Epub 2019 Jan 31.

Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.

Stimuli-sensitive drug delivery systems show beneficial features of both medical and pharmaceutical fields. In this article, polymeric nanogel P (N-isopropylacrylamide-N,N '-dimethylaminoethyl methacrylate [NIPAM-DMAEMA]) (PND) with pH/redox/thermo-responsivenesses was synthesized by the in situ polymerization of NIPAM and DMAEMA for the controlled release of doxorubicin hydrochloride (DOX) and N,N '-bis(acryloyl)cystamine (BAC) and N,N '-methylenebisacrylamide (MBA) act as the crosslinkers, respectively. The structure, size, and zeta potential of PND-BAC and PND-MBA were further characterized. Moreover, after loading DOX, the encapsulation efficiency and the in vitro release behavior of PND-BAC/DOX and PND-MBA/DOX nanogels were discussed in detail. Compared to PND-MBA NGs, PND-BAC nanogels have redox degradability due to the presence of the crosslinker BAC. After loading DOX, the PND-BAC/DOX nanogel showed a higher encapsulation efficiency (81.6 ± 1.2)% and thermo- and pH-responsiveness as well as redox-responsive in vitro release. These properties together with excellent environmentally sensitive properties make PND-BAC as an attractive candidate for application in drug nanocarriers for the targeted drug delivery of model payloads. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1195-1203, 2019.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.36611DOI Listing
June 2019

Interaction of ciprofloxacin with the activated sludge of the sewage treatment plant.

Environ Sci Pollut Res Int 2018 Dec 16;25(35):35064-35073. Epub 2018 Oct 16.

Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo, 315211, China.

Interaction of ciprofloxacin with the activated sludge of the sewage treatment plant is of importance for the ciprofloxacin migration and risk control. More than 96.0% ciprofloxacin was removed through the sludge adsorption. The sludge surface charge varied little with ciprofloxacin since most ciprofloxacin was dissociated into the neutral one. No obvious shift was observed for the soluble carbohydrate concentration and composition with the addition of ciprofloxacin, indicating the weak interaction between the carbohydrates and ciprofloxacin. The introduction of ciprofloxacin resulted in a reduction of the soluble protein concentration, a marked increase of the extracellular protein fluorescence intensities, and a dramatic emergence of new extracellular proteins. The alteration of the proteins highlights the strong interaction between the extracellular proteins and ciprofloxacin, and the consequent integration of certain soluble proteins and original unextractable inner layer extracellular proteins into the extractable extracellular proteins. Different types of interactions are suggested to dominate between the extracellular proteins and the differently dissociated ciprofloxacin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-3413-0DOI Listing
December 2018