Publications by authors named "Dorrin Zarrin-Khat"

4 Publications

  • Page 1 of 1

Molecular Mechanisms Underlying the Cardiovascular Benefits of SGLT2i and GLP-1RA.

Curr Diab Rep 2018 06 9;18(7):45. Epub 2018 Jun 9.

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.

Purpose Of Review: In addition to their effects on glycemic control, two specific classes of relatively new anti-diabetic drugs, namely the sodium glucose co-transporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) have demonstrated reduced rates of major adverse cardiovascular events (MACE) in subjects with type 2 diabetes (T2D) at high risk for cardiovascular disease (CVD). This review summarizes recent experimental results that inform putative molecular mechanisms underlying these benefits.

Recent Findings: SGLT2i and GLP-1RA exert cardiovascular effects by targeting in both common and distinctive ways (A) several mediators of macro- and microvascular pathophysiology: namely (A1) inflammation and atherogenesis, (A2) oxidative stress-induced endothelial dysfunction, (A3) vascular smooth muscle cell reactive oxygen species (ROS) production and proliferation, and (A4) thrombosis. These agents also exhibit (B) hemodynamic effects through modulation of (B1) natriuresis/diuresis and (B2) the renin-angiotensin-aldosterone system. This review highlights that while GLP-1RA exert direct effects on vascular (endothelial and smooth muscle) cells, the effects of SGLT2i appear to include the activation of signaling pathways that prevent adverse vascular remodeling. Both SGLT2i and GLP-1RA confer hemodynamic effects that counter adverse cardiac remodeling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11892-018-1011-7DOI Listing
June 2018

Autophagy and mitophagy flux in young and aged skeletal muscle following chronic contractile activity.

J Physiol 2018 08 3;596(16):3567-3584. Epub 2018 Jul 3.

Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, M3J 1P3, Canada.

Key Points: A healthy mitochondrial pool is dependent on the removal of dysfunctional organelles via mitophagy, but little is known about how mitophagy is altered with ageing and chronic exercise. Chronic contractile activity (CCA) is a standardized exercise model that can elicit mitochondrial adaptations in both young and aged muscle, albeit to a lesser degree in the aged group. Assessment of mitophagy flux revealed enhanced targeting of mitochondria for degradation in aged muscle, in contrast to previous theories. Mitophagy flux was significantly reduced as an adaptation to CCA suggesting that an improvement in organelle quality reduces the need for mitochondrial turnover. CCA enhances lysosomal capacity and may ameliorate lysosomal dysfunction in aged muscle.

Abstract: Skeletal muscle exhibits deficits in mitochondrial quality with age. Central to the maintenance of a healthy mitochondrial pool is the removal of dysfunctional organelles via mitophagy. Little is known on how mitophagy is altered with ageing and chronic exercise. We assessed mitophagy flux using colchicine treatment in vivo following chronic contractile activity (CCA) of muscle in young and aged rats. CCA evoked mitochondrial biogenesis in young muscle, with an attenuated response in aged muscle. Mitophagy flux was higher in aged muscle and was correlated with the enhanced expression of mitophagy receptors and upstream transcriptional regulators. CCA decreased mitophagy flux in both age groups, suggesting an improvement in organelle quality. CCA also reduced the exaggerated expression of TFEB evident in aged muscle, which may be promoting the age-induced increase in lysosomal markers. Thus, aged muscle possesses an elevated drive for autophagy and mitophagy which may contribute to the decline in organelle content observed with age, but which may serve to maintain mitochondrial quality. CCA improves organelle integrity and reduces mitophagy, illustrating that chronic exercise is a modality to improve muscle quality in aged populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1113/JP275998DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6092298PMC
August 2018

Cardiac-specific inducible overexpression of human plasma membrane Ca ATPase 4b is cardioprotective and improves survival in mice following ischemic injury.

Clin Sci (Lond) 2018 03 26;132(6):641-654. Epub 2018 Mar 26.

Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G-2C4, Canada

Heart failure (HF) is associated with reduced expression of plasma membrane Ca-ATPase 4 (PMCA4). Cardiac-specific overexpression of human PMCA4b in mice inhibited nNOS activity and reduced cardiac hypertrophy by inhibiting calcineurin. Here we examine temporally regulated cardiac-specific overexpression of hPMCA4b in mouse models of myocardial ischemia reperfusion injury (IRI) , and HF following experimental myocardial infarction (MI) Doxycycline-regulated cardiomyocyte-specific overexpression and activity of hPMCA4b produced adaptive changes in expression levels of Ca-regulatory genes, and induced hypertrophy without significant differences in Ca transients or diastolic Ca concentrations. Total cardiac NOS and nNOS-specific activities were reduced in mice with cardiac overexpression of hPMCA4b while nNOS, eNOS and iNOS protein levels did not differ. hMPCA4b-overexpressing mice also exhibited elevated systolic blood pressure vs. controls, with increased contractility and lusitropy In isolated hearts undergoing IRI, hPMCA4b overexpression was cardioprotective. NO donor-treated hearts overexpressing hPMCA4b showed reduced LVDP and larger infarct size versus vehicle-treated hearts undergoing IRI, demonstrating that the cardioprotective benefits of hPMCA4b-repressed nNOS are lost by restoring NO availability. Finally, both pre-existing and post-MI induction of hPMCA4b overexpression reduced infarct expansion and improved survival from HF. Cardiac PMCA4b regulates nNOS activity, cardiac mass and contractility, such that PMCA4b overexpression preserves cardiac function following IRI, heightens cardiac performance and limits infarct progression, cardiac hypertrophy and HF, even when induced late post-MI. These data identify PMCA4b as a novel therapeutic target for IRI and HF.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1042/CS20171337DOI Listing
March 2018

A CD103 Conventional Dendritic Cell Surveillance System Prevents Development of Overt Heart Failure during Subclinical Viral Myocarditis.

Immunity 2017 11;47(5):974-989.e8

Toronto General Hospital Research Institute, University Health Network (UHN), Toronto ON, M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON, M5S 1A1, Canada; Department of Immunology, University of Toronto, Toronto ON, M5S 1A1, Canada; Peter Munk Cardiac Centre, Toronto ON, M5G 1L7, Canada; Ted Rogers Centre for Heart Research, Toronto ON, M5G 1L7, Canada. Electronic address:

Innate and adaptive immune cells modulate heart failure pathogenesis during viral myocarditis, yet their identities and functions remain poorly defined. We utilized a combination of genetic fate mapping, parabiotic, transcriptional, and functional analyses and demonstrated that the heart contained two major conventional dendritic cell (cDC) subsets, CD103 and CD11b, which differentially relied on local proliferation and precursor recruitment to maintain their tissue residency. Following viral infection of the myocardium, cDCs accumulated in the heart coincident with monocyte infiltration and loss of resident reparative embryonic-derived cardiac macrophages. cDC depletion abrogated antigen-specific CD8 T cell proliferative expansion, transforming subclinical cardiac injury to overt heart failure. These effects were mediated by CD103 cDCs, which are dependent on the transcription factor BATF3 for their development. Collectively, our findings identified resident cardiac cDC subsets, defined their origins, and revealed an essential role for CD103 cDCs in antigen-specific T cell responses during subclinical viral myocarditis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.immuni.2017.10.011DOI Listing
November 2017