Publications by authors named "Donna K Arnett"

451 Publications

Genomics of Postprandial Lipidomics in the Genetics of Lipid-Lowering Drugs and Diet Network Study.

Nutrients 2021 Nov 10;13(11). Epub 2021 Nov 10.

College of Public Health, University of Kentucky, Lexington, KY 40536, USA.

Postprandial lipemia (PPL) is an important risk factor for cardiovascular disease. Inter-individual variation in the dietary response to a meal is known to be influenced by genetic factors, yet genes that dictate variation in postprandial lipids are not completely characterized. Genetic studies of the plasma lipidome can help to better understand postprandial metabolism by isolating lipid molecular species which are more closely related to the genome. We measured the plasma lipidome at fasting and 6 h after a standardized high-fat meal in 668 participants from the Genetics of Lipid-Lowering Drugs and Diet Network study (GOLDN) using ultra-performance liquid chromatography coupled to (quadrupole) time-of-flight mass spectrometry. A total of 413 unique lipids were identified. Heritable and responsive lipid species were examined for association with single-nucleotide polymorphisms (SNPs) genotyped on the Affymetrix 6.0 array. The most statistically significant SNP findings were replicated in the Amish Heredity and Phenotype Intervention (HAPI) Heart Study. We further followed up findings from GOLDN with a regional analysis of cytosine-phosphate-guanine (CpGs) sites measured on the Illumina HumanMethylation450 array. A total of 132 lipids were both responsive to the meal challenge and heritable in the GOLDN study. After correction for multiple testing of 132 lipids (α = 5 × 10/132 = 4 × 10), no SNP was statistically significantly associated with any lipid response. Four SNPs in the region of a known lipid locus (fatty acid desaturase 1 and 2/ and ) on chromosome 11 had < 8.0 × 10 for arachidonic acid FA(20:4). Those SNPs replicated in HAPI Heart with < 3.3 × 10. CpGs around the region were associated with arachidonic acid and the relationship of one SNP was partially mediated by a CpG ( = 0.005). Both SNPs and CpGs from the fatty acid desaturase region on chromosome 11 contribute jointly and independently to the diet response to a high-fat meal.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu13114000DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617762PMC
November 2021

A 6-CpG validated methylation risk score model for metabolic syndrome: The HyperGEN and GOLDN studies.

PLoS One 2021 15;16(11):e0259836. Epub 2021 Nov 15.

Department of Epidemiology, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States of America.

There has been great interest in genetic risk prediction using risk scores in recent years, however, the utility of scores developed in European populations and later applied to non-European populations has not been successful. The goal of this study was to create a methylation risk score (MRS) for metabolic syndrome (MetS), demonstrating the utility of MRS across race groups using cross-sectional data from the Hypertension Genetic Epidemiology Network (HyperGEN, N = 614 African Americans (AA)) and the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN, N = 995 European Americans (EA)). To demonstrate this, we first selected cytosine-guanine dinucleotides (CpG) sites measured on Illumina Methyl450 arrays previously reported to be significantly associated with MetS and/or component conditions in more than one race/ethnic group (CPT1A cg00574958, PHOSPHO1 cg02650017, ABCG1 cg06500161, SREBF1 cg11024682, SOCS3 cg18181703, TXNIP cg19693031). Second, we calculated the parameter estimates for the 6 CpGs in the HyperGEN data (AA) and used the beta estimates as weights to construct a MRS in HyperGEN (AA), which was validated in GOLDN (EA). We performed association analyses using logistic mixed models to test the association between the MRS and MetS, adjusting for covariates. Results showed the MRS was significantly associated with MetS in both populations. In summary, a MRS for MetS was a strong predictor for the condition across two race groups, suggesting MRS may be useful to examine metabolic disease risk or related complications across race/ethnic groups.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259836PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8592434PMC
November 2021

Multi-Ancestry Genome-wide Association Study Accounting for Gene-Psychosocial Factor Interactions Identifies Novel Loci for Blood Pressure Traits.

HGG Adv 2021 Jan 31;2(1). Epub 2020 Oct 31.

Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, 17489, Germany.

Psychological and social factors are known to influence blood pressure (BP) and risk of hypertension and associated cardiovascular diseases. To identify novel BP loci, we carried out genome-wide association meta-analyses of systolic, diastolic, pulse, and mean arterial BP taking into account the interaction effects of genetic variants with three psychosocial factors: depressive symptoms, anxiety symptoms, and social support. Analyses were performed using a two-stage design in a sample of up to 128,894 adults from 5 ancestry groups. In the combined meta-analyses of Stages 1 and 2, we identified 59 loci (p value <5e-8), including nine novel BP loci. The novel associations were observed mostly with pulse pressure, with fewer observed with mean arterial pressure. Five novel loci were identified in African ancestry, and all but one showed patterns of interaction with at least one psychosocial factor. Functional annotation of the novel loci supports a major role for genes implicated in the immune response (), synaptic function and neurotransmission (), as well as genes previously implicated in neuropsychiatric or stress-related disorders (). These findings underscore the importance of considering psychological and social factors in gene discovery for BP, especially in non-European populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xhgg.2020.100013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8562625PMC
January 2021

Lipid Phenotypes and DNA Methylation: a Review of the Literature.

Curr Atheroscler Rep 2021 09 1;23(11):71. Epub 2021 Sep 1.

Department of Epidemiology, College of Public Health, University of Kentucky, 111 Washington Ave, Lexington, KY, 40508, USA.

Purpose Of Review: Epigenetic modifications via DNA methylation have previously been linked to blood lipid levels, dyslipidemias, and atherosclerosis. The purpose of this review is to discuss current literature on the role of DNA methylation on lipid traits and their associated pathologies.

Recent Findings: Candidate gene and epigenome-wide approaches have identified differential methylation of genes associated with lipid traits (particularly CPT1A, ABCG1, SREBF1), and novel approaches are being implemented to further characterize these relationships. Moreover, studies on environmental factors have shown that methylation variations at lipid-related genes are associated with diet and pollution exposure. Further investigation is needed to elucidate the directionality of the associations between the environment, lipid traits, and epigenome. Future studies should also seek to increase the diversity of cohorts, as European and Asian ancestry populations are the predominant study populations in the current literature.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11883-021-00965-wDOI Listing
September 2021

Progress and Research Priorities in Imaging Genomics for Heart and Lung Disease: Summary of an NHLBI Workshop.

Circ Cardiovasc Imaging 2021 08 13;14(8):e012943. Epub 2021 Aug 13.

Sections of Preventive Medicine and Epidemiology, and Cardiology, Department of Medicine, Department of Epidemiology, Boston University Schools of Medicine and Public Health, and Center for Computing and Data Sciences, Boston University, MA (R.S.V.).

Imaging genomics is a rapidly evolving field that combines state-of-the-art bioimaging with genomic information to resolve phenotypic heterogeneity associated with genomic variation, improve risk prediction, discover prevention approaches, and enable precision diagnosis and treatment. Contemporary bioimaging methods provide exceptional resolution generating discrete and quantitative high-dimensional phenotypes for genomics investigation. Despite substantial progress in combining high-dimensional bioimaging and genomic data, methods for imaging genomics are evolving. Recognizing the potential impact of imaging genomics on the study of heart and lung disease, the National Heart, Lung, and Blood Institute convened a workshop to review cutting-edge approaches and methodologies in imaging genomics studies, and to establish research priorities for future investigation. This report summarizes the presentations and discussions at the workshop. In particular, we highlight the need for increased availability of imaging genomics data in diverse populations, dedicated focus on less common conditions, and centralization of efforts around specific disease areas.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCIMAGING.121.012943DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8486340PMC
August 2021

Population sequencing data reveal a compendium of mutational processes in the human germ line.

Science 2021 08 12;373(6558):1030-1035. Epub 2021 Aug 12.

Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.

Biological mechanisms underlying human germline mutations remain largely unknown. We statistically decompose variation in the rate and spectra of mutations along the genome using volume-regularized nonnegative matrix factorization. The analysis of a sequencing dataset (TOPMed) reveals nine processes that explain the variation in mutation properties between loci. We provide a biological interpretation for seven of these processes. We associate one process with bulky DNA lesions that are resolved asymmetrically with respect to transcription and replication. Two processes track direction of replication fork and replication timing, respectively. We identify a mutagenic effect of active demethylation primarily acting in regulatory regions and a mutagenic effect of long interspersed nuclear elements. We localize a mutagenic process specific to oocytes from population sequencing data. This process appears transcriptionally asymmetric.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aba7408DOI Listing
August 2021

Influence of age on links between major modifiable risk factors and stroke occurrence in West Africa.

J Neurol Sci 2021 09 9;428:117573. Epub 2021 Jul 9.

College of Medicine, University of Ibadan, Nigeria. Electronic address:

Background The burden of stroke in Africa is high. Understanding how age associates with major modifiable stroke risk factors could inform tailored demographic stroke prevention strategies. Purpose To quantify the magnitude and direction of the effect sizes of key modifiable stroke risk factors according to three age groups: <50 years (young), 50-65 years (middle age) and > 65 years (elderly) in West Africa. Methods This was a case-control study involving 15 sites in Ghana and Nigeria. Cases included adults aged ≥18 years with CT/MRI scan-typed stroke. Controls were age-and gender-matched stroke-free adults. Detailed evaluations for vascular, lifestyle and psychosocial factors were performed. We estimated adjusted odds ratios (aOR) using conditional logistic regression and population attributable risk (PAR) with 95% Confidence Interval of vascular risk factors by age groups. Results Among 3553 stroke cases, 813 (22.9%) were young, 1441 (40.6%) were middle-aged and 1299 (36.6%) were elderly. Among the 5 co-shared risk factors, dyslipidemia with PAR and aOR (95%CI) of 62.20% (52.82-71.58) and 4.13 (2.64-6.46) was highest among the young age group; hypertension with PAR of 94.31% (91.82-96.80) and aOR of 28.93 (15.10-55.44) was highest among the middle-age group. Diabetes with PAR of 32.29%(27.52-37.05) and aOR of 3.49 (2.56-4.75); meat consumption with PAR of 42.34%(32.33-52.35) and aOR of 2.40 (1.76, 3.26); and non-consumption of green vegetables, PAR of 16.81%(12.02-21.60) and aOR of 2.23 (1.60-3.12) were highest among the elderly age group. However confidence intervals of risk estimates overlapped across age groups. Additionally, among the young age group cigarette smoking, psychosocial stress and cardiac disease were independently associated with stroke. Furthermore, education, stress, physical inactivity and salt intake were associated with stroke in the middle-age group while cardiac disease was associated with stroke in the elderly age group. Conclusion There is a differential influence of age on the associations of major risk factors with stroke in this West African cohort. Targeting modifiable factors predominant within an age group may be more effective as a stroke prevention strategy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jns.2021.117573DOI Listing
September 2021

Adverse Cardiovascular Outcomes and Antihypertensive Treatment: A Genome-Wide Interaction Meta-Analysis in the International Consortium for Antihypertensive Pharmacogenomics Studies.

Clin Pharmacol Ther 2021 09 15;110(3):723-732. Epub 2021 Aug 15.

Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA.

We sought to identify genome-wide variants influencing antihypertensive drug response and adverse cardiovascular outcomes, utilizing data from four randomized controlled trials in the International Consortium for Antihypertensive Pharmacogenomics Studies (ICAPS). Genome-wide antihypertensive drug-single nucleotide polymorphism (SNP) interaction tests for four drug classes (β-blockers, n = 9,195; calcium channel blockers (CCBs), n = 10,511; thiazide/thiazide-like diuretics, n = 3,516; ACE-inhibitors/ARBs, n = 2,559) and cardiovascular outcomes (incident myocardial infarction, stroke, or death) were analyzed among patients with hypertension of European ancestry. Top SNPs from the meta-analyses were tested for replication of cardiovascular outcomes in an independent Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) study (n = 21,267), blood pressure (BP) response in independent ICAPS studies (n = 1,552), and ethnic validation in African Americans from the Genetics of Hypertension Associated Treatment study (GenHAT; n = 5,115). One signal reached genome-wide significance in the β-blocker-SNP interaction analysis (rs139945292, Interaction P = 1.56 × 10 ). rs139945292 was validated through BP response to β-blockers, with the T-allele associated with less BP reduction (systolic BP response P = 6 × 10 , Beta = 3.09, diastolic BP response P = 5 × 10 , Beta = 1.53). The T-allele was also associated with increased adverse cardiovascular risk within the β-blocker treated patients' subgroup (P = 2.35 × 10 , odds ratio = 1.57, 95% confidence interval = 1.23-1.99). The locus showed nominal replication in CHARGE, and consistent directional trends in β-blocker treated African Americans. rs139945292 is an expression quantitative trait locus for the 50 kb upstream gene NTM (neurotrimin). No SNPs attained genome-wide significance for any other drugs classes. Top SNPs were located near CALB1 (CCB), FLJ367777 (ACE-inhibitor), and CES5AP1 (thiazide). The NTM region is associated with increased risk for adverse cardiovascular outcomes and less BP reduction in β-blocker treated patients. Further investigation into this region is warranted.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cpt.2355DOI Listing
September 2021

Identification of novel and rare variants associated with handgrip strength using whole genome sequence data from the NHLBI Trans-Omics in Precision Medicine (TOPMed) Program.

PLoS One 2021 2;16(7):e0253611. Epub 2021 Jul 2.

Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States of America.

Handgrip strength is a widely used measure of muscle strength and a predictor of a range of morbidities including cardiovascular diseases and all-cause mortality. Previous genome-wide association studies of handgrip strength have focused on common variants primarily in persons of European descent. We aimed to identify rare and ancestry-specific genetic variants associated with handgrip strength by conducting whole-genome sequence association analyses using 13,552 participants from six studies representing diverse population groups from the Trans-Omics in Precision Medicine (TOPMed) Program. By leveraging multiple handgrip strength measures performed in study participants over time, we increased our effective sample size by 7-12%. Single-variant analyses identified ten handgrip strength loci among African-Americans: four rare variants, five low-frequency variants, and one common variant. One significant and four suggestive genes were identified associated with handgrip strength when aggregating rare and functional variants; all associations were ancestry-specific. We additionally leveraged the different ancestries available in the UK Biobank to further explore the ancestry-specific association signals from the single-variant association analyses. In conclusion, our study identified 11 new loci associated with handgrip strength with rare and/or ancestry-specific genetic variations, highlighting the added value of whole-genome sequencing in diverse samples. Several of the associations identified using single-variant or aggregate analyses lie in genes with a function relevant to the brain or muscle or were reported to be associated with muscle or age-related traits. Further studies in samples with sequence data and diverse ancestries are needed to confirm these findings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253611PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8253404PMC
November 2021

A multi-ethnic epigenome-wide association study of leukocyte DNA methylation and blood lipids.

Nat Commun 2021 06 28;12(1):3987. Epub 2021 Jun 28.

Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA.

Here we examine the association between DNA methylation in circulating leukocytes and blood lipids in a multi-ethnic sample of 16,265 subjects. We identify 148, 35, and 4 novel associations among Europeans, African Americans, and Hispanics, respectively, and an additional 186 novel associations through a trans-ethnic meta-analysis. We observe a high concordance in the direction of effects across racial/ethnic groups, a high correlation of effect sizes between high-density lipoprotein and triglycerides, a modest overlap of associations with epigenome-wide association studies of other cardio-metabolic traits, and a largely non-overlap with lipid loci identified to date through genome-wide association studies. Thirty CpGs reached significance in at least 2 racial/ethnic groups including 7 that showed association with the expression of an annotated gene. CpGs annotated to CPT1A showed evidence of being influenced by triglycerides levels. DNA methylation levels of circulating leukocytes show robust and consistent association with blood lipid levels across multiple racial/ethnic groups.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-23899-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8238961PMC
June 2021

Widespread diabetes screening for cardiovascular disease risk estimation.

Authors:
Donna K Arnett

Lancet 2021 06 2;397(10291):2228-2230. Epub 2021 Jun 2.

Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY 40356, USA. Electronic address:

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0140-6736(21)00764-9DOI Listing
June 2021

Sugar-Sweetened Beverage Consumption and Calcified Atherosclerotic Plaques in the Coronary Arteries: The NHLBI Family Heart Study.

Nutrients 2021 May 22;13(6). Epub 2021 May 22.

Division of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02120, USA.

Background: Sugar-sweetened beverage (SSB) intake is associated with higher risk of weight gain, diabetes, hypertension, cardiovascular disease, and cardiovascular mortality. However, the association of SSB with subclinical atherosclerosis in the general population is unknown.

Objective: Our primary objective was to investigate the association between SSB intake and prevalence of atherosclerotic plaque in the coronary arteries in The National Heart, Lung, and Blood Institute (NHLBI) Family Heart Study.

Methods: We studied 1991 participants of the NHLBI Family Heart Study without known coronary heart disease. Intake of SSB was assessed through a semi-quantitative food frequency questionnaire. Coronary artery calcium (CAC) was measured by cardiac Computed Tomography (CT) and prevalent CAC was defined as an Agatston score ≥100. We used generalized estimating equations to calculate adjusted prevalence ratios of CAC. A sensitivity analysis was also performed at different ranges of cut points for CAC.

Results: Mean age and body mass index (BMI) were 55.0 years and 29.5 kg/m, respectively, and 60% were female. In analysis adjusted for age, sex, BMI, smoking, alcohol use, physical activity, energy intake, and field center, higher SSB consumption was not associated with higher prevalence of CAC [prevalence ratio (95% confidence interval) of: 1.0 (reference), 1.36 (0.70-2.63), 1.69 (0.93-3.09), 1.21 (0.69-2.12), 1.05 (0.60-1.84), and 1.58 (0.85-2.94) for SSB consumption of almost never, 1-3/month, 1/week, 2-6/week, 1/day, and ≥2/day, respectively (p for linear trend 0.32)]. In a sensitivity analysis, there was no evidence of association between SSB and prevalent CAC when different CAC cut points of 0, 50, 150, 200, and 300 were used.

Conclusions: These data do not provide evidence for an association between SSB consumption and prevalent CAC in adult men and women.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu13061775DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224703PMC
May 2021

Epigenome-wide association study of kidney function identifies trans-ethnic and ethnic-specific loci.

Genome Med 2021 04 30;13(1):74. Epub 2021 Apr 30.

Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA.

Background: DNA methylation (DNAm) is associated with gene regulation and estimated glomerular filtration rate (eGFR), a measure of kidney function. Decreased eGFR is more common among US Hispanics and African Americans. The causes for this are poorly understood. We aimed to identify trans-ethnic and ethnic-specific differentially methylated positions (DMPs) associated with eGFR using an agnostic, genome-wide approach.

Methods: The study included up to 5428 participants from multi-ethnic studies for discovery and 8109 participants for replication. We tested the associations between whole blood DNAm and eGFR using beta values from Illumina 450K or EPIC arrays. Ethnicity-stratified analyses were performed using linear mixed models adjusting for age, sex, smoking, and study-specific and technical variables. Summary results were meta-analyzed within and across ethnicities. Findings were assessed using integrative epigenomics methods and pathway analyses.

Results: We identified 93 DMPs associated with eGFR at an FDR of 0.05 and replicated 13 and 1 DMPs across independent samples in trans-ethnic and African American meta-analyses, respectively. The study also validated 6 previously published DMPs. Identified DMPs showed significant overlap enrichment with DNase I hypersensitive sites in kidney tissue, sites associated with the expression of proximal genes, and transcription factor motifs and pathways associated with kidney tissue and kidney development.

Conclusions: We uncovered trans-ethnic and ethnic-specific DMPs associated with eGFR, including DMPs enriched in regulatory elements in kidney tissue and pathways related to kidney development. These findings shed light on epigenetic mechanisms associated with kidney function, bridging the gap between population-specific eGFR-associated DNAm and tissue-specific regulatory context.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13073-021-00877-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088054PMC
April 2021

A System for Phenotype Harmonization in the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine (TOPMed) Program.

Am J Epidemiol 2021 10;190(10):1977-1992

Genotype-phenotype association studies often combine phenotype data from multiple studies to increase statistical power. Harmonization of the data usually requires substantial effort due to heterogeneity in phenotype definitions, study design, data collection procedures, and data-set organization. Here we describe a centralized system for phenotype harmonization that includes input from phenotype domain and study experts, quality control, documentation, reproducible results, and data-sharing mechanisms. This system was developed for the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program, which is generating genomic and other -omics data for more than 80 studies with extensive phenotype data. To date, 63 phenotypes have been harmonized across thousands of participants (recruited in 1948-2012) from up to 17 studies per phenotype. Here we discuss challenges in this undertaking and how they were addressed. The harmonized phenotype data and associated documentation have been submitted to National Institutes of Health data repositories for controlled access by the scientific community. We also provide materials to facilitate future harmonization efforts by the community, which include 1) the software code used to generate the 63 harmonized phenotypes, enabling others to reproduce, modify, or extend these harmonizations to additional studies, and 2) the results of labeling thousands of phenotype variables with controlled vocabulary terms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/aje/kwab115DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485147PMC
October 2021

Chromosome Xq23 is associated with lower atherogenic lipid concentrations and favorable cardiometabolic indices.

Nat Commun 2021 04 12;12(1):2182. Epub 2021 Apr 12.

Division of Cardiology, George Washington University School of Medicine and Healthcare Sciences, Washington, DC, USA.

Autosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 × 10), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 × 10), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 × 10). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-22339-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042019PMC
April 2021

DNA Methylation and Blood Pressure Phenotypes: A Review of the Literature.

Am J Hypertens 2021 04;34(3):267-273

Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, Kentucky, USA.

Genetic studies of DNA have been unable to explain a significant portion of the variance of the estimated heritability of blood pressure (BP). Epigenetic mechanisms, particularly DNA methylation, have helped explain additional biological processes linked to BP phenotypes and diseases. Candidate gene methylation studies and genome-wide methylation studies of BP have highlighted impactful cytosine-phosphate-guanine (CpG) markers across different ethnicities. Furthermore, many of these BP-related CpG sites are also linked to metabolism-related phenotypes. Integrating epigenome-wide association study data with other layers of molecular data such as genotype data (from single nucleotide polymorphism arrays or sequencing), other epigenetic data, and/or transcriptome data can provide additional information about the significance and complexity of these relationships. Recent data suggest that epigenetic changes can be consequences rather than causes of BP variation. Finally, these data can give insight into downstream effects of long-standing high BP (due to target organ damage (TOD)). The current review provides a literature overview of epigenetic modifications in BP and TOD. Recent studies strongly support the importance of epigenetic modifications, such as DNA methylation, in BP and TOD for relevant biological insights, reliable biomarkers, and possible future therapeutics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajh/hpab026DOI Listing
April 2021

Age and sex are associated with the plasma lipidome: findings from the GOLDN study.

Lipids Health Dis 2021 Apr 3;20(1):30. Epub 2021 Apr 3.

Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA.

Background: Developing an understanding of the biochemistry of aging in both sexes is critical for managing disease throughout the lifespan. Lipidomic associations with age and sex have been reported, but prior studies are limited by measurements in serum rather than plasma or by participants taking lipid-lowering medications.

Methods: Our study included lipidomic data from 980 participants aged 18-87 years old from the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN). Participants were off lipid-lowering medications for at least 4 weeks, and signal intensities of 413 known lipid species were measured in plasma. We examined linear age and sex associations with signal intensity of (a) 413 lipid species; (b) 6 lipid classes (glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, fatty acids, and acylcarnitines); and (c) 15 lipid subclasses; as well as with the particle sizes of three lipoproteins.

Results: Significant age associations were identified in 4 classes, 11 subclasses, 147 species, and particle size of one lipoprotein while significant sex differences were identified in 5 classes, 12 subclasses, 248 species, and particle sizes of two lipoproteins. For many lipid species (n = 97), age-related associations were significantly different between males and females. Age*sex interaction effects were most prevalent among phosphatidylcholines, sphingomyelins, and triglycerides.

Conclusion: We identified several lipid species, subclasses, and classes that differ by age and sex; these lipid phenotypes may serve as useful biomarkers for lipid changes and associated cardiovascular risk with aging in the future. Future studies of age-related changes throughout the adult lifespan of both sexes are warranted.

Trial Registration: ClinicalTrials.gov NCT00083369 ; May 21, 2004.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12944-021-01456-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019182PMC
April 2021

Discovery and fine-mapping of height loci via high-density imputation of GWASs in individuals of African ancestry.

Am J Hum Genet 2021 04 12;108(4):564-582. Epub 2021 Mar 12.

The Charles R. Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) < 5%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p < 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained ≤20 variants in the credible sets that jointly account for 99% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.02.011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059339PMC
April 2021

Whole-Exome Sequencing and hiPSC Cardiomyocyte Models Identify , , and of Potential Importance to Left Ventricular Hypertrophy in an African Ancestry Population.

Front Genet 2021 19;12:588452. Epub 2021 Feb 19.

College of Public Health, University of Kentucky, Lexington, KY, United States.

: Indices of left ventricular (LV) structure and geometry represent useful intermediate phenotypes related to LV hypertrophy (LVH), a predictor of cardiovascular (CV) disease (CVD) outcomes. We conducted an exome-wide association study of LV mass (LVM) adjusted to height, LV internal diastolic dimension (LVIDD), and relative wall thickness (RWT) among 1,364 participants of African ancestry (AAs) in the Hypertension Genetic Epidemiology Network (HyperGEN). Both single-variant and gene-based sequence kernel association tests were performed to examine whether common and rare coding variants contribute to variation in echocardiographic traits in AAs. We then used a data-driven procedure to prioritize and select genes for functional validation using a human induced pluripotent stem cell cardiomyocyte (hiPSC-CM) model. Three genes [myosin VIIA and Rab interacting protein (), trafficking protein particle complex 11 (), and solute carrier family 27 member 6 ()] were prioritized based on statistical significance, variant functional annotations, gene expression in the hiPSC-CM model, and prior biological evidence and were subsequently knocked down in the hiPSC-CM model. Expression profiling of hypertrophic gene markers in the knockdowns suggested a decrease in hypertrophic expression profiles. knockdowns showed a significant decrease in atrial natriuretic factor () and brain natriuretic peptide () expression. Knockdowns of the heart long chain fatty acid (FA) transporter resulted in downregulated caveolin 3 () expression, which has been linked to hypertrophic phenotypes in animal models. Finally, knockdown was linked to deficient calcium handling. : The three genes are biologically plausible candidates that provide new insight to hypertrophic pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fgene.2021.588452DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7933688PMC
February 2021

Genetic correlations between traits associated with hyperuricemia, gout, and comorbidities.

Eur J Hum Genet 2021 Sep 26;29(9):1438-1445. Epub 2021 Feb 26.

Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.

Hypertension, obesity, chronic kidney disease and type 2 diabetes are comorbidities that have very high prevalence among persons with hyperuricemia (serum urate > 6.8 mg/dL) and gout. Here we use multivariate genetic models to test the hypothesis that the co-association of traits representing hyperuricemia and its comorbidities is genetically based. Using Bayesian whole-genome regression models, we estimated the genetic marker-based variance and the covariance between serum urate, serum creatinine, systolic blood pressure (SBP), blood glucose and body mass index (BMI) from two independent family-based studies: The Framingham Heart Study-FHS and the Hypertension Genetic Epidemiology Network study-HyperGEN. The main genetic findings that replicated in both FHS and HyperGEN, were (1) creatinine was genetically correlated only with urate and (2) BMI was genetically correlated with urate, SBP, and glucose. The environmental covariance among the traits was generally highest for trait pairs involving BMI. The genetic overlap of traits representing the comorbidities of hyperuricemia and gout appears to cluster in two separate axes of genetic covariance. Because creatinine is genetically correlated with urate but not with metabolic traits, this suggests there is one genetic module of shared loci associated with hyperuricemia and chronic kidney disease. Another module of shared loci may account for the association of hyperuricemia and metabolic syndrome. This study provides a clear quantitative genetic basis for the clustering of comorbidities with hyperuricemia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41431-021-00830-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440599PMC
September 2021

Bending the Curve in Cardiovascular Disease Mortality: Bethesda + 40 and Beyond.

Circulation 2021 Feb 22;143(8):837-851. Epub 2021 Feb 22.

Office of the Surgeon General, US Department of Health and Human Services, Washington, DC (J.S.W.).

More than 40 years after the 1978 Bethesda Conference on the Declining Mortality from Coronary Heart Disease provided the scientific community with a blueprint for systematic analysis to understand declining rates of coronary heart disease, there are indications the decline has ended or even reversed despite advances in our knowledge about the condition and treatment. Recent data show a more complex situation, with mortality rates for overall cardiovascular disease, including coronary heart disease and stroke, decelerating, whereas those for heart failure are increasing. To mark the 40th anniversary of the Bethesda Conference, the National Heart, Lung, and Blood Institute and the American Heart Association cosponsored the "Bending the Curve in Cardiovascular Disease Mortality: Bethesda + 40" symposium. The objective was to examine the immediate and long-term outcomes of the 1978 conference and understand the current environment. Symposium themes included trends and future projections in cardiovascular disease (in the United States and internationally), the evolving obesity and diabetes epidemics, and harnessing emerging and innovative opportunities to preserve and promote cardiovascular health and prevent cardiovascular disease. In addition, participant-led discussion explored the challenges and barriers in promoting cardiovascular health across the lifespan and established a potential framework for observational research and interventions that would begin in early childhood (or ideally in utero). This report summarizes the relevant research, policy, and practice opportunities discussed at the symposium.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.120.046501DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905830PMC
February 2021

Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.

Nature 2021 02 10;590(7845):290-299. Epub 2021 Feb 10.

The Broad Institute of MIT and Harvard, Cambridge, MA, USA.

The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes). In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03205-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875770PMC
February 2021

Genome-wide association study of circulating interleukin 6 levels identifies novel loci.

Hum Mol Genet 2021 04;30(5):393-409

Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK.

Interleukin 6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67 428 (ndiscovery = 52 654 and nreplication = 14 774) individuals of European ancestry. The inverse variance fixed effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on chromosome (Chr) 2q14, (Pcombined = 1.8 × 10-11), HLA-DRB1/DRB5 rs660895 on Chr6p21 (Pcombined = 1.5 × 10-10) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (Pcombined = 1.2 × 10-122). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddab023DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8098112PMC
April 2021

Whole genome sequence analyses of eGFR in 23,732 people representing multiple ancestries in the NHLBI trans-omics for precision medicine (TOPMed) consortium.

EBioMedicine 2021 Jan 6;63:103157. Epub 2021 Jan 6.

Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.

Background: Genetic factors that influence kidney traits have been understudied for low frequency and ancestry-specific variants.

Methods: We combined whole genome sequencing (WGS) data from 23,732 participants from 10 NHLBI Trans-Omics for Precision Medicine (TOPMed) Program multi-ethnic studies to identify novel loci for estimated glomerular filtration rate (eGFR). Participants included European, African, East Asian, and Hispanic ancestries. We applied linear mixed models using a genetic relationship matrix estimated from the WGS data and adjusted for age, sex, study, and ethnicity.

Findings: When testing single variants, we identified three novel loci driven by low frequency variants more commonly observed in non-European ancestry (PRKAA2, rs180996919, minor allele frequency [MAF] 0.04%, P = 6.1 × 10; METTL8, rs116951054, MAF 0.09%, P = 4.5 × 10; and MATK, rs539182790, MAF 0.05%, P = 3.4 × 10). We also replicated two known loci for common variants (rs2461702, MAF=0.49, P = 1.2 × 10, nearest gene GATM, and rs71147340, MAF=0.34, P = 3.3 × 10, CDK12). Testing aggregated variants within a gene identified the MAF gene. A statistical approach based on local ancestry helped to identify replication samples for ancestry-specific variants.

Interpretation: This study highlights challenges in studying variants influencing kidney traits that are low frequency in populations and more common in non-European ancestry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ebiom.2020.103157DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804602PMC
January 2021

Donor-specific phenotypic variation in hiPSC cardiomyocyte-derived exosomes impacts endothelial cell function.

Am J Physiol Heart Circ Physiol 2021 03 8;320(3):H954-H968. Epub 2021 Jan 8.

Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Children's Research Institute and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.

Exosomes are an important mechanism of cell-cell interaction in the cardiovascular system, both in maintaining homeostasis and in stress response. Interindividual differences that alter content in exosomes may play a role in cardiovascular disease pathology. To study the effect of interindividual cardiomyocyte (CM) variation, we characterized exosomal content in phenotypically diverse human induced pluripotent stem cell-derived CMs (hiPSC-CMs). Cell lines were generated from six participants in the HyperGEN cohort: three with left ventricular hypertrophy (LVH) and three with normal left ventricular mass (LVM). Sequence analysis of the intracellular and exosomal RNA populations showed distinct expression pattern differences between hiPSC-CM lines derived from individuals with LVH and those with normal LVM. Functional analysis of hiPSC-endothelial cells (hiPSC-ECs) treated with exosomes from both hiPSC-CM groups showed significant variation in response, including differences in tube formation, migration, and proliferation. Overall, treatment of hiPSC-ECs with exosomes resulted in significant expression changes associated with angiogenesis and endothelial cell vasculogenesis. However, the hiPSC-ECs treated with exosomes from the LVH-affected donors exhibited significantly increased proliferation but decreased tube formation and migration, suggesting angiogenic dysregulation. The intracellular RNA and the miRNA content in exosomes are significantly different in hiPSC-CMs derived from LVH-affected individuals compared with those from unaffected individuals. Treatment of endothelial cells with these exosomes functionally affects cellular phenotypes in a donor-specific manner. These findings provide novel insight into underlying mechanisms of hypertrophic cell signaling between different cell types. With a growing interest in stem cells and exosomes for cardiovascular therapeutic use, this also provides information important for regenerative medicine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00463.2020DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294700PMC
March 2021

Association of Sickle Cell Trait With Incidence of Coronary Heart Disease Among African American Individuals.

JAMA Netw Open 2021 01 4;4(1):e2030435. Epub 2021 Jan 4.

Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson.

Importance: The incidence of and mortality from coronary heart disease (CHD) are substantially higher among African American individuals compared with non-Hispanic White individuals, even after adjusting for traditional factors associated with CHD. The unexplained excess risk might be due to genetic factors related to African ancestry that are associated with a higher risk of CHD, such as the heterozygous state for the sickle cell variant or sickle cell trait (SCT).

Objective: To evaluate whether there is an association between SCT and the incidence of myocardial infarction (MI) or composite CHD outcomes in African American individuals.

Design, Setting, And Participants: This cohort study included 5 large, prospective, population-based cohorts of African American individuals in the Women's Health Initiative (WHI) study, the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study, the Multi-Ethnic Study of Atherosclerosis (MESA), the Jackson Heart Study (JHS), and the Atherosclerosis Risk in Communities (ARIC) study. The follow-up periods included in this study were 1993 and 1998 to 2014 for the WHI study, 2003 to 2014 for the REGARDS study, 2002 to 2016 for the MESA, 2002 to 2015 for the JHS, and 1987 to 2016 for the ARIC study. Data analysis began in October 2013 and was completed in October 2020.

Exposures: Sickle cell trait status was evaluated by either direct genotyping or high-quality imputation of rs334 (the sickle cell variant). Participants with sickle cell disease and those with a history of CHD were excluded from the analyses.

Main Outcomes And Measures: Incident MI, defined as adjudicated nonfatal or fatal MI, and incident CHD, defined as adjudicated nonfatal MI, fatal MI, coronary revascularization procedures, or death due to CHD. Cox proportional hazards regression models were used to estimate the hazard ratio for incident MI or CHD comparing SCT carriers with noncarriers. Models were adjusted for age, sex (except for the WHI study), study site or region of residence, hypertension status or systolic blood pressure, type 1 or 2 diabetes, serum high-density lipoprotein level, total cholesterol level, and global ancestry (estimated from principal components analysis).

Results: A total of 23 197 African American men (29.8%) and women (70.2%) were included in the combined sample, of whom 1781 had SCT (7.7% prevalence). Mean (SD) ages at baseline were 61.2 (6.9) years in the WHI study (n = 5904), 64.0 (9.3) years in the REGARDS study (n = 10 714), 62.0 (10.0) years in the MESA (n = 1556), 50.3 (12.0) years in the JHS (n = 2175), and 53.2 (5.8) years in the ARIC study (n = 2848). There were no significant differences in the distribution of traditional factors associated with cardiovascular disease by SCT status within cohorts. A combined total of 1034 participants (76 with SCT) had incident MI, and 1714 (137 with SCT) had the composite CHD outcome. The meta-analyzed crude incidence rate of MI did not differ by SCT status and was 3.8 per 1000 person-years (95% CI, 3.3-4.5 per 1000 person-years) among those with SCT and 3.6 per 1000 person-years (95% CI, 2.7-5.1 per 1000 person-years) among those without SCT. For the composite CHD outcome, these rates were 7.3 per 1000 person-years (95% CI, 5.5-9.7 per 1000 person-years) among those with SCT and 6.0 per 1000 person-years (95% CI, 4.9-7.4 per 1000 person-years) among those without SCT. Meta-analysis of the 5 study results showed that SCT status was not significantly associated with MI (hazard ratio, 1.03; 95% CI, 0.81-1.32) or the composite CHD outcome (hazard ratio, 1.16; 95% CI, 0.92-1.47).

Conclusions And Relevance: In this cohort study, there was not an association between SCT and increased risk of MI or CHD in African American individuals. These disorders may not be associated with sickle cell trait-related sudden death in this population.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamanetworkopen.2020.30435DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7786247PMC
January 2021

Loss-of-function genomic variants highlight potential therapeutic targets for cardiovascular disease.

Nat Commun 2020 12 18;11(1):6417. Epub 2020 Dec 18.

The Institute for Translational Genomics and Population Sciences, Department of Pediatrics and Los Angeles Biomedical Research Institute, Harbor-UCLA, Torrance, CA, USA.

Pharmaceutical drugs targeting dyslipidemia and cardiovascular disease (CVD) may increase the risk of fatty liver disease and other metabolic disorders. To identify potential novel CVD drug targets without these adverse effects, we perform genome-wide analyses of participants in the HUNT Study in Norway (n = 69,479) to search for protein-altering variants with beneficial impact on quantitative blood traits related to cardiovascular disease, but without detrimental impact on liver function. We identify 76 (11 previously unreported) presumed causal protein-altering variants associated with one or more CVD- or liver-related blood traits. Nine of the variants are predicted to result in loss-of-function of the protein. This includes ZNF529:p.K405X, which is associated with decreased low-density-lipoprotein (LDL) cholesterol (P = 1.3 × 10) without being associated with liver enzymes or non-fasting blood glucose. Silencing of ZNF529 in human hepatoma cells results in upregulation of LDL receptor and increased LDL uptake in the cells. This suggests that inhibition of ZNF529 or its gene product should be prioritized as a novel candidate drug target for treating dyslipidemia and associated CVD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-20086-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7749177PMC
December 2020

COVID-19 Test Strategy to Guide Quarantine Interval in University Student.

medRxiv 2020 Dec 11. Epub 2020 Dec 11.

Background: Following COVID-19 exposure, the CDC recommends a 10-14 day quarantine for asymptomatic individuals and more recently a 7 day quarantine with a negative PCR test. We performed a university-based prospective student cohort study to determine if early PCR negativity predicts day 14 negativity.

Methods: We enrolled 101 asymptomatic, quarantining, students, performed nasopharyngeal swabs for viral testing on days 3 or 4, 5, 7, 10 and 14 and determined the proportion of concordant negative results for each day versus day 14 with a two-sided 95% exact binomial confidence interval.

Results: Overall, 14 of 90 (16%, 95% CI: 9% - 25%) tested positive while in quarantine, with 7 initial positive tests on day 3 or 4, 5 on day 5, 2 on day 7, and none on day 10 or 14. Rates of concordant negative test results are: day 5 vs. day 14 = 45/50 (90%, 95% CI: 78% - 97%); day 7 vs. day 14 = 47/52 (90%, 95% CI: 79% - 97%); day 10 vs. day 14 = 48/53 (91%, 95% CI:79% - 97%), with no evidence of different negative rates between earlier days and day 14 by McNemar's test, p > 0.05.

Conclusions: The 16% positive rate supports the ongoing need to quarantine close contacts of COVID-19 cases, but this prospective study provides the first direct evidence that exposed asymptomatic students ages 18-44 years in a university setting are at low risk if released from quarantine at 7 days if they test negative PCR test prior to release.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.12.09.20246785DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7743099PMC
December 2020
-->