Publications by authors named "Donald W Bowden"

349 Publications

Multiethnic Genome-wide Association Study of Subclinical Atherosclerosis in Individuals with Type 2 Diabetes.

Circ Genom Precis Med 2021 Jul 9. Epub 2021 Jul 9.

Department of Epidemiology, University of North Carolina, Chapel Hill, NC.

- Coronary artery calcification (CAC) and carotid artery intima-media thickness (cIMT) are measures of subclinical atherosclerosis in asymptomatic individuals and strong risk factors for cardiovascular disease (CVD). Type 2 diabetes (T2D) is an independent CVD risk factor that accelerates atherosclerosis. - We performed meta-analyses of genome-wide association studies (GWAS) in up to 2,500 T2D individuals of European ancestry (EA) and 1,590 T2D individuals of African ancestry (AA) with or without exclusion of prevalent CVD, for CAC measured by cardiac computed tomography, and 3,608 EA and 838 AA with T2D for cIMT measured by ultrasonography within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. - We replicated two loci (rs9369640 and rs9349379 near and rs10757278 near ) for CAC and one locus for cIMT (rs7412 and rs445925 near ) that were previously reported in the general EA populations. We identified one novel CAC locus (rs8000449 near at 13q13.3) at =2.0×10 in EA. No additional loci were identified with the meta-analyses of EA and AA. The expression QTL analysis with nearby expressed genes derived from arterial wall and metabolic tissues from GTEx pinpoints , encoding a matricellular protein involved in bone formation and bone matrix organization, as the potential candidate gene at this locus. In addition, we found significant associations (<3.1×10) for three previously reported coronary artery disease loci for these subclinical atherosclerotic phenotypes (rs2891168 near and rs11170820 near for CAC, and rs7412 near for cIMT). - Our results provide potential biological mechanisms that could link CAC and cIMT to increased CVD risk in individuals with T2D.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.120.003258DOI Listing
July 2021

Gene Set Enrichment Analyses Identify Pathways Involved in Genetic Risk for Diabetic Retinopathy.

Am J Ophthalmol 2021 Jun 21. Epub 2021 Jun 21.

Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA; Broad Institute of Harvard and MIT, Cambridge, MA.

Purpose: To identify functionally related genes associated with diabetic retinopathy (DR) risk using gene set enrichment analyses (GSEA) applied to genome-wide association study (GWAS) meta-analyses.

Methods: We analyzed DR GWAS meta-analyses performed on 3,246 Europeans and 2,611 African Americans with type 2 diabetes. Gene sets relevant to five key DR pathophysiology processes were investigated: tissue injury, vascular events, metabolic events and glial dysregulation, neuronal dysfunction, and inflammation. Keywords relevant to these processes were queried in four pathway and ontology databases. Two GSEA methods, Meta-Analysis Gene set Enrichment of variaNT Associations (MAGENTA) and Multi-marker Analysis of GenoMic Annotation (MAGMA) were used. Gene sets were defined to be enriched for gene associations with DR if the P value corrected for multiple testing (Pcorr) was <.05.

Results: Five gene sets were significantly enriched for multiple modest genetic associations with DR in one method (MAGENTA or MAGMA) and also at least nominally significant (uncorrected P <.05) in the other method. These pathways were regulation of the lipid catabolic process (2-fold enrichment, Pcorr=.014); nitric oxide biosynthesis (1.92-fold enrichment, Pcorr=.022); lipid digestion, mobilization and transport (1.6-fold enrichment, P=.032); apoptosis (1.53-fold enrichment, P=.041); and retinal ganglion cell degeneration (2-fold enrichment, Pcorr=.049). The interferon gamma (IFNG) gene, previously implicated in DR by protein-protein interactions in our GWAS, was among the top ranked genes in the nitric oxide pathway (best variant P=.0001).

Conclusions: These GSEA indicate that variants in genes involved in oxidative stress, lipid transport and catabolism and cell degeneration are enriched for genes associated with DR risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajo.2021.06.014DOI Listing
June 2021

Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes.

Nat Commun 2021 06 9;12(1):3505. Epub 2021 Jun 9.

Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.

Hundreds of thousands of genetic variants have been reported to cause severe monogenic diseases, but the probability that a variant carrier develops the disease (termed penetrance) is unknown for virtually all of them. Additionally, the clinical utility of common polygenetic variation remains uncertain. Using exome sequencing from 77,184 adult individuals (38,618 multi-ancestral individuals from a type 2 diabetes case-control study and 38,566 participants from the UK Biobank, for whom genotype array data were also available), we apply clinical standard-of-care gene variant curation for eight monogenic metabolic conditions. Rare variants causing monogenic diabetes and dyslipidemias display effect sizes significantly larger than the top 1% of the corresponding polygenic scores. Nevertheless, penetrance estimates for monogenic variant carriers average 60% or lower for most conditions. We assess epidemiologic and genetic factors contributing to risk prediction in monogenic variant carriers, demonstrating that inclusion of polygenic variation significantly improves biomarker estimation for two monogenic dyslipidemias.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-23556-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190084PMC
June 2021

The trans-ancestral genomic architecture of glycemic traits.

Nat Genet 2021 06 31;53(6):840-860. Epub 2021 May 31.

Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00852-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610958PMC
June 2021

Genome-wide association study of vitamin D concentrations and bone mineral density in the African American-Diabetes Heart Study.

PLoS One 2021 20;16(5):e0251423. Epub 2021 May 20.

Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.

Relative to European Americans, African Americans have lower 25-hydroxyvitamin D (25OHD) and vitamin D binding protein (VDBP) concentrations, higher 1,25-dihydroxyvitamin D (1,25(OH)2D3) concentrations and bone mineral density (BMD), and paradoxically reduced burdens of calcified atherosclerotic plaque (subclinical atherosclerosis). To identify genetic factors contributing to vitamin D and BMD measures, association analysis of >14M variants was conducted in a maximum of 697 African American-Diabetes Heart Study participants with type 2 diabetes (T2D). The most significant association signals were detected for VDBP on chromosome 4; variants rs7041 (β = 0.44, SE = 0.019, P = 9.4x10-86) and rs4588 (β = 0.17, SE = 0.021, P = 3.5x10-08) in the group-specific component (vitamin D binding protein) gene (GC). These variants were found to be independently associated. In addition, rs7041 was also associated with bioavailable vitamin D (BAVD; β = 0.16, SE = 0.02, P = 3.3x10-19). Six rare variants were significantly associated with 25OHD, including a non-synonymous variant in HSPG2 (rs116788687; β = -1.07, SE = 0.17, P = 2.2x10-10) and an intronic variant in TNIK (rs143555701; β = -1.01, SE = 0.18, P = 9.0x10-10), both biologically related to bone development. Variants associated with 25OHD failed to replicate in African Americans from the Insulin Resistance Atherosclerosis Family Study (IRASFS). Evaluation of vitamin D metabolism and bone mineral density phenotypes in an African American population enriched for T2D could provide insight into ethnic specific differences in vitamin D metabolism and bone mineral density.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251423PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8136717PMC
May 2021

Association of Visceral Adipose Tissue and Insulin Resistance with Incident Metabolic Syndrome Independent of Obesity Status: The IRAS Family Study.

Obesity (Silver Spring) 2021 Jul 17;29(7):1195-1202. Epub 2021 May 17.

Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.

Objective: Although increasing evidence suggests that visceral adipose tissue (VAT) is a major underlying cause of metabolic syndrome (MetS), few studies have measured VAT at multiple time points in diverse populations. VAT and insulin resistance were hypothesized to differ by MetS status within BMI category in the Insulin Resistance Atherosclerosis Study (IRAS) Family Study and, further, that baseline VAT and insulin resistance and increases over time are associated with incident MetS.

Methods: Generalized estimating equations were used for differences in body fat distribution and insulin resistance by MetS status. Mixed effects logistic regression was used for the association of baseline and change in adiposity and insulin resistance with incident MetS across 5 years, adjusted for age, sex, race/ethnicity, and family correlation.

Results: VAT and insulin sensitivity differed significantly by MetS status and BMI category at baseline. VAT and homeostatic model assessment of insulin resistance (HOMA-IR) at baseline (VAT odds ratio [OR] = 1.16 [95% CI: 1.12-2.31]; HOMA-IR OR = 1.85 [95% CI: 1.32-2.58]) and increases over time (VAT OR = 1.55 [95% CI: 1.22-1.98]; HOMA-IR OR = 3.23 [95% CI: 2.20-4.73]) were associated with incident MetS independent of BMI category.

Conclusions: Differing levels of VAT may be driving metabolic heterogeneity within BMI categories. Both overall and abdominal obesity (VAT) may play a role in the development of MetS. Increased VAT over time contributed additional risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/oby.23177DOI Listing
July 2021

Allele-specific variation at APOE increases nonalcoholic fatty liver disease and obesity but decreases risk of Alzheimer's disease and myocardial infarction.

Hum Mol Genet 2021 Jul;30(15):1443-1456

Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA.

Nonalcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is highly correlated with metabolic disease. NAFLD results from environmental exposures acting on a susceptible polygenic background. This study performed the largest multiethnic investigation of exonic variation associated with NAFLD and correlated metabolic traits and diseases. An exome array meta-analysis was carried out among eight multiethnic population-based cohorts (n = 16 492) with computed tomography (CT) measured hepatic steatosis. A fixed effects meta-analysis identified five exome-wide significant loci (P < 5.30 × 10-7); including a novel signal near TOMM40/APOE. Joint analysis of TOMM40/APOE variants revealed the TOMM40 signal was attributed to APOE rs429358-T; APOE rs7412 was not associated with liver attenuation. Moreover, rs429358-T was associated with higher serum alanine aminotransferase, liver steatosis, cirrhosis, triglycerides and obesity; as well as, lower cholesterol and decreased risk of myocardial infarction and Alzheimer's disease (AD) in phenome-wide association analyses in the Michigan Genomics Initiative, United Kingdom Biobank and/or public datasets. These results implicate APOE in imaging-based identification of NAFLD. This association may or may not translate to nonalcoholic steatohepatitis; however, these results indicate a significant association with advanced liver disease and hepatic cirrhosis. These findings highlight allelic heterogeneity at the APOE locus and demonstrate an inverse link between NAFLD and AD at the exome level in the largest analysis to date.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddab096DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8283205PMC
July 2021

Chromosome Xq23 is associated with lower atherogenic lipid concentrations and favorable cardiometabolic indices.

Nat Commun 2021 04 12;12(1):2182. Epub 2021 Apr 12.

Division of Cardiology, George Washington University School of Medicine and Healthcare Sciences, Washington, DC, USA.

Autosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 × 10), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 × 10), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 × 10). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-22339-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042019PMC
April 2021

Discovery and fine-mapping of height loci via high-density imputation of GWASs in individuals of African ancestry.

Am J Hum Genet 2021 04 12;108(4):564-582. Epub 2021 Mar 12.

The Charles R. Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) < 5%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p < 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained ≤20 variants in the credible sets that jointly account for 99% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.02.011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059339PMC
April 2021

Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.

Nature 2021 02 10;590(7845):290-299. Epub 2021 Feb 10.

The Broad Institute of MIT and Harvard, Cambridge, MA, USA.

The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes). In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03205-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875770PMC
February 2021

A Noncoding Variant Near PPP1R3B Promotes Liver Glycogen Storage and MetS, but Protects Against Myocardial Infarction.

J Clin Endocrinol Metab 2021 Jan;106(2):372-387

Brigham and Women's Hospital, Havard University, Boston, MA, USA.

Context: Glycogen storage diseases are rare. Increased glycogen in the liver results in increased attenuation.

Objective: Investigate the association and function of a noncoding region associated with liver attenuation but not histologic nonalcoholic fatty liver disease.

Design: Genetics of Obesity-associated Liver Disease Consortium.

Setting: Population-based.

Main Outcome: Computed tomography measured liver attenuation.

Results: Carriers of rs4841132-A (frequency 2%-19%) do not show increased hepatic steatosis; they have increased liver attenuation indicative of increased glycogen deposition. rs4841132 falls in a noncoding RNA LOC157273 ~190 kb upstream of PPP1R3B. We demonstrate that rs4841132-A increases PPP1R3B through a cis genetic effect. Using CRISPR/Cas9 we engineered a 105-bp deletion including rs4841132-A in human hepatocarcinoma cells that increases PPP1R3B, decreases LOC157273, and increases glycogen perfectly mirroring the human disease. Overexpression of PPP1R3B or knockdown of LOC157273 increased glycogen but did not result in decreased LOC157273 or increased PPP1R3B, respectively, suggesting that the effects may not all occur via affecting RNA levels. Based on electronic health record (EHR) data, rs4841132-A associates with all components of the metabolic syndrome (MetS). However, rs4841132-A associated with decreased low-density lipoprotein (LDL) cholesterol and risk for myocardial infarction (MI). A metabolic signature for rs4841132-A includes increased glycine, lactate, triglycerides, and decreased acetoacetate and beta-hydroxybutyrate.

Conclusions: These results show that rs4841132-A promotes a hepatic glycogen storage disease by increasing PPP1R3B and decreasing LOC157273. rs4841132-A promotes glycogen accumulation and development of MetS but lowers LDL cholesterol and risk for MI. These results suggest that elevated hepatic glycogen is one cause of MetS that does not invariably promote MI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/clinem/dgaa855DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823249PMC
January 2021

Inherited causes of clonal haematopoiesis in 97,691 whole genomes.

Nature 2020 10 14;586(7831):763-768. Epub 2020 Oct 14.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.

Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer and coronary heart disease-this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP). Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-2819-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944936PMC
October 2020

Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale.

Nat Genet 2020 09 24;52(9):969-983. Epub 2020 Aug 24.

Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Large-scale whole-genome sequencing studies have enabled the analysis of rare variants (RVs) associated with complex phenotypes. Commonly used RV association tests have limited scope to leverage variant functions. We propose STAAR (variant-set test for association using annotation information), a scalable and powerful RV association test method that effectively incorporates both variant categories and multiple complementary annotations using a dynamic weighting scheme. For the latter, we introduce 'annotation principal components', multidimensional summaries of in silico variant annotations. STAAR accounts for population structure and relatedness and is scalable for analyzing very large cohort and biobank whole-genome sequencing studies of continuous and dichotomous traits. We applied STAAR to identify RVs associated with four lipid traits in 12,316 discovery and 17,822 replication samples from the Trans-Omics for Precision Medicine Program. We discovered and replicated new RV associations, including disruptive missense RVs of NPC1L1 and an intergenic region near APOC1P1 associated with low-density lipoprotein cholesterol.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-0676-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7483769PMC
September 2020

Identification of type 2 diabetes loci in 433,540 East Asian individuals.

Nature 2020 06 6;582(7811):240-245. Epub 2020 May 6.

Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Meta-analyses of genome-wide association studies (GWAS) have identified more than 240 loci that are associated with type 2 diabetes (T2D); however, most of these loci have been identified in analyses of individuals with European ancestry. Here, to examine T2D risk in East Asian individuals, we carried out a meta-analysis of GWAS data from 77,418 individuals with T2D and 356,122 healthy control individuals. In the main analysis, we identified 301 distinct association signals at 183 loci, and across T2D association models with and without consideration of body mass index and sex, we identified 61 loci that are newly implicated in predisposition to T2D. Common variants associated with T2D in both East Asian and European populations exhibited strongly correlated effect sizes. Previously undescribed associations include signals in or near GDAP1, PTF1A, SIX3, ALDH2, a microRNA cluster, and genes that affect the differentiation of muscle and adipose cells. At another locus, expression quantitative trait loci at two overlapping T2D signals affect two genes-NKX6-3 and ANK1-in different tissues. Association studies in diverse populations identify additional loci and elucidate disease-associated genes, biology, and pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-2263-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7292783PMC
June 2020

Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci.

Mol Psychiatry 2020 May 5. Epub 2020 May 5.

Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.

Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, "Some College" (yes/no) and "Graduated College" (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-020-0719-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641978PMC
May 2020

Long-term Kidney Transplantation Outcomes Network (APOLLO): Design and Rationale.

Kidney Int Rep 2020 Mar 13;5(3):278-288. Epub 2019 Dec 13.

Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA.

Introduction: Much of the higher risk for end-stage kidney disease (ESKD) in African American individuals relates to ancestry-specific variation in the apolipoprotein L1 gene (). Relative to kidneys from European American deceased-donors, kidneys from African American deceased-donors have shorter allograft survival and African American living-kidney donors more often develop ESKD. The National Institutes of Health (NIH)-sponsored Long-term Kidney Transplantation Outcomes Network (APOLLO) is prospectively assessing kidney allograft survival from donors with recent African ancestry based on donor and recipient genotypes.

Methods: APOLLO will evaluate outcomes from 2614 deceased kidney donor-recipient pairs, as well as additional living-kidney donor-recipient pairs and unpaired deceased-donor kidneys.

Results: The United Network for Organ Sharing (UNOS), Association of Organ Procurement Organizations, American Society of Transplantation, American Society for Histocompatibility and Immunogenetics, and nearly all U.S. kidney transplant programs, organ procurement organizations (OPOs), and histocompatibility laboratories are participating in this observational study. APOLLO employs a central institutional review board (cIRB) and maintains voluntary partnerships with OPOs and histocompatibility laboratories. A Community Advisory Council composed of African American individuals with a personal or family history of kidney disease has advised the NIH Project Office and Steering Committee since inception. UNOS is providing data for outcome analyses.

Conclusion: This article describes unique aspects of the protocol, design, and performance of APOLLO. Results will guide use of genotypic data to improve the assessment of quality in deceased-donor kidneys and could increase numbers of transplanted kidneys, reduce rates of discard, and improve the safety of living-kidney donation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ekir.2019.11.022DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7056919PMC
March 2020

QRS duration is associated with all-cause mortality in type 2 diabetes: The diabetes heart study.

J Electrocardiol 2020 Jan - Feb;58:150-154. Epub 2019 Nov 28.

Section on Cardiology, Department of Internal Medicine, Wake Forest School of Medicine, North Carolina, 1 Medical Center Blvd, Winston-Salem, NC 27157, United States of America. Electronic address:

Background: QRS-duration predicts mortality in patients with heart failure and, to a lesser extent, the general population. However, in patients with diabetes, its prognostic significance is unknown. To better understand how QRS-duration relates to mortality among those with diabetes, we explored survival as a function of QRS-duration in the Diabetes Heart Study.

Methods: The study population included 1335 participants. Cox proportional hazards modeling was used to evaluate the relationship between QRS-duration and all-cause mortality, comparing those with QRS-duration ≤120 vs. >120 (ms). Multivariable models adjusted for age, sex, race, hypertension, smoking, years with diabetes, BMI, systolic blood pressure, cholesterol, triglycerides, glomerular filtration rate, and hemoglobin A1c.

Results And Conclusions: Participants were: mean age 61 ± 9, 55% women, 83% white; 99 participants (7.5%) had a QRS-duration >120. After 11,000 person-years of follow-up (median 8.5 years; maximum 13.9 years), 266 participants had died (20%). Participants with baseline QRS-duration >120 had an adjusted hazard ratio for all-cause mortality of 1.56 (95% CI 1.05-2.24; p = 0.027). Modeling QRS-duration as a continuous variable, we found an 11% increase in all-cause mortality for each 10 ms increase in QRS-duration. In conclusion, QRS-duration is associated with subsequent all-cause mortality among those with type 2 diabetes-participants with QRS-duration >120 ms had a 56% increase in all-cause mortality, even after adjustment for conventional risk factors. Given the ubiquitous presence of ECG data in the medical record, QRS-duration may prove to be a useful prognostic measure, especially among those with diabetes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jelectrocard.2019.11.053DOI Listing
June 2021

Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations.

PLoS Genet 2019 12 23;15(12):e1008500. Epub 2019 Dec 23.

Genomics Platform, Broad Institute, Cambridge, Massachusetts, United States of America.

Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are limited. In addition, these populations have more complex linkage disequilibrium structure. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data. We demonstrated that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhanced gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) < 0.5%, we observed a 2.3- to 6.1-fold increase in the number of well-imputed variants, with 11-34% improvement in average imputation quality, compared to the state-of-the-art 1000 Genomes Project Phase 3 and Haplotype Reference Consortium reference panels. Impressively, even for extremely rare variants with minor allele count <10 (including singletons) in the imputation target samples, average information content rescued was >86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~21,600 African-ancestry and ~21,700 Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC [p = 8.8x10-15] in African populations, rs11549407 with lower HGB [p = 1.5x10-12] and HCT [p = 8.8x10-10] in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of the TOPMed imputation reference panel for identification of novel rare variant associations not previously detected in similarly sized genome-wide studies of under-represented African and Hispanic/Latino populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1008500DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953885PMC
December 2019

Symptoms Suggestive of Gastroparesis in a Community-Based Cohort of European Americans and African Americans with Type 2 Diabetes Mellitus.

Dig Dis Sci 2020 08 9;65(8):2321-2330. Epub 2019 Dec 9.

Section of Gastroenterology, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA.

Background: Although gastroparesis is seen in patients with type 2 diabetes mellitus (T2DM), the prevalence of symptoms suggestive of gastroparesis in patients with T2DM is unknown, particularly among African Americans.

Aims: To determine the prevalence of symptoms associated with gastroparesis in a large community-based population of European Americans and African Americans with T2DM.

Methods: Individuals with T2DM in the Diabetes Heart Study were asked to complete the gastroparesis cardinal symptom index (GCSI) and other GI-related questionnaires. GCSI total score ≥ 18 represented moderate or worse symptoms suggestive of gastroparesis.

Results: A total of 1253 participants (700 female, 553 male) completed the GCSI: 750 were European American and 503 African American. GCSI scores ≥ 18 were recorded in 72 participants: 38 (5%) of European Americans and 34 (7%) of African Americans. The average GCSI was 24.1 in European Americans and 24.6 in African Americans, indicating moderate to severe symptoms. Compared to European Americans with GCSI scores ≥ 18, African Americans were younger (59.4 vs. 53.3 years, p = 0.004), had earlier onset of T2DM (46.3 vs. 40.1 years, p = 0.01), higher HbA1c (7.6 vs. 9.1, p = 0.0009), underwent fewer upper endoscopies (55.3% vs. 26.5%, p = 0.02), and had more anxiety and depression (p < 0.001).

Conclusions: Moderate or greater symptoms suggestive of gastroparesis are present in 5-7% of European and African American patients with T2DM in community-based populations. Symptoms suggestive of gastroparesis may be underappreciated in patients with T2DM and account for upper gastrointestinal symptoms, unexplained glycemic control issues, and decreased quality of life.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10620-019-05974-zDOI Listing
August 2020

Association of Genetic Variants With Primary Open-Angle Glaucoma Among Individuals With African Ancestry.

JAMA 2019 11;322(17):1682-1691

Clayton Eye Care Center Management Inc, Marrow, Georgia.

Importance: Primary open-angle glaucoma presents with increased prevalence and a higher degree of clinical severity in populations of African ancestry compared with European or Asian ancestry. Despite this, individuals of African ancestry remain understudied in genomic research for blinding disorders.

Objectives: To perform a genome-wide association study (GWAS) of African ancestry populations and evaluate potential mechanisms of pathogenesis for loci associated with primary open-angle glaucoma.

Design, Settings, And Participants: A 2-stage GWAS with a discovery data set of 2320 individuals with primary open-angle glaucoma and 2121 control individuals without primary open-angle glaucoma. The validation stage included an additional 6937 affected individuals and 14 917 unaffected individuals using multicenter clinic- and population-based participant recruitment approaches. Study participants were recruited from Ghana, Nigeria, South Africa, the United States, Tanzania, Britain, Cameroon, Saudi Arabia, Brazil, the Democratic Republic of the Congo, Morocco, Peru, and Mali from 2003 to 2018. Individuals with primary open-angle glaucoma had open iridocorneal angles and displayed glaucomatous optic neuropathy with visual field defects. Elevated intraocular pressure was not included in the case definition. Control individuals had no elevated intraocular pressure and no signs of glaucoma.

Exposures: Genetic variants associated with primary open-angle glaucoma.

Main Outcomes And Measures: Presence of primary open-angle glaucoma. Genome-wide significance was defined as P < 5 × 10-8 in the discovery stage and in the meta-analysis of combined discovery and validation data.

Results: A total of 2320 individuals with primary open-angle glaucoma (mean [interquartile range] age, 64.6 [56-74] years; 1055 [45.5%] women) and 2121 individuals without primary open-angle glaucoma (mean [interquartile range] age, 63.4 [55-71] years; 1025 [48.3%] women) were included in the discovery GWAS. The GWAS discovery meta-analysis demonstrated association of variants at amyloid-β A4 precursor protein-binding family B member 2 (APBB2; chromosome 4, rs59892895T>C) with primary open-angle glaucoma (odds ratio [OR], 1.32 [95% CI, 1.20-1.46]; P = 2 × 10-8). The association was validated in an analysis of an additional 6937 affected individuals and 14 917 unaffected individuals (OR, 1.15 [95% CI, 1.09-1.21]; P < .001). Each copy of the rs59892895*C risk allele was associated with increased risk of primary open-angle glaucoma when all data were included in a meta-analysis (OR, 1.19 [95% CI, 1.14-1.25]; P = 4 × 10-13). The rs59892895*C risk allele was present at appreciable frequency only in African ancestry populations. In contrast, the rs59892895*C risk allele had a frequency of less than 0.1% in individuals of European or Asian ancestry.

Conclusions And Relevance: In this genome-wide association study, variants at the APBB2 locus demonstrated differential association with primary open-angle glaucoma by ancestry. If validated in additional populations this finding may have implications for risk assessment and therapeutic strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jama.2019.16161DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6865235PMC
November 2019

HDAC9 is implicated in atherosclerotic aortic calcification and affects vascular smooth muscle cell phenotype.

Nat Genet 2019 11 28;51(11):1580-1587. Epub 2019 Oct 28.

National Heart, Lung, and Blood Institute Framingham Heart Study, Framingham, MA, USA.

Aortic calcification is an important independent predictor of future cardiovascular events. We performed a genome-wide association meta-analysis to determine SNPs associated with the extent of abdominal aortic calcification (n = 9,417) or descending thoracic aortic calcification (n = 8,422). Two genetic loci, HDAC9 and RAP1GAP, were associated with abdominal aortic calcification at a genome-wide level (P < 5.0 × 10). No SNPs were associated with thoracic aortic calcification at the genome-wide threshold. Increased expression of HDAC9 in human aortic smooth muscle cells promoted calcification and reduced contractility, while inhibition of HDAC9 in human aortic smooth muscle cells inhibited calcification and enhanced cell contractility. In matrix Gla protein-deficient mice, a model of human vascular calcification, mice lacking HDAC9 had a 40% reduction in aortic calcification and improved survival. This translational genomic study identifies the first genetic risk locus associated with calcification of the abdominal aorta and describes a previously unknown role for HDAC9 in the development of vascular calcification.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0514-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858575PMC
November 2019

Plasma apoM and S1P levels are inversely associated with mortality in African Americans with type 2 diabetes mellitus.

J Lipid Res 2019 08 27;60(8):1425-1431. Epub 2019 May 27.

Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC

apoM is a minor HDL apolipoprotein and carrier for sphingosine-1-phosphate (S1P). HDL apoM and S1P concentrations are inversely associated with atherosclerosis progression in rodents. We evaluated associations between plasma concentrations of S1P, plasma concentrations of apoM, and HDL apoM levels with prevalent subclinical atherosclerosis and mortality in the African American-Diabetes Heart Study participants (N = 545). Associations between plasma S1P, plasma apoM, and HDL apoM with subclinical atherosclerosis and mortality were assessed using multivariate parametric, nonparametric, and Cox proportional hazards models. At baseline, participants' median (25th percentile, 75th percentile) age was 55 (49, 62) years old and their coronary artery calcium (CAC) mass score was 26.5 (0.0, 346.5). Plasma S1P, plasma apoM, and HDL apoM were not associated with CAC. After 64 (57.6, 70.3) months of follow-up, 81 deaths were recorded. Higher concentrations of plasma S1P [odds ratio (OR) = 0.14, = 0.01] and plasma apoM (OR = 0.10, = 0.02), but not HDL apoM ( = 0.89), were associated with lower mortality after adjusting for age, sex, statin use, CAC, kidney function, and albuminuria. We conclude that plasma S1P and apoM concentrations are inversely and independently associated with mortality, but not CAC, in African Americans with type 2 diabetes after accounting for conventional risk factors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1194/jlr.P089409DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6672033PMC
August 2019

A multi-ancestry genome-wide study incorporating gene-smoking interactions identifies multiple new loci for pulse pressure and mean arterial pressure.

Hum Mol Genet 2019 08;28(15):2615-2633

Icelandic Heart Association, Kopavogur, Iceland.

Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene-smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene-smoking interaction analysis and 38 were newly identified (P < 5 × 10-8, false discovery rate < 0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddz070DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644157PMC
August 2019

Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls.

Nature 2019 06 22;570(7759):71-76. Epub 2019 May 22.

Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, South Korea.

Protein-coding genetic variants that strongly affect disease risk can yield relevant clues to disease pathogenesis. Here we report exome-sequencing analyses of 20,791 individuals with type 2 diabetes (T2D) and 24,440 non-diabetic control participants from 5 ancestries. We identify gene-level associations of rare variants (with minor allele frequencies of less than 0.5%) in 4 genes at exome-wide significance, including a series of more than 30 SLC30A8 alleles that conveys protection against T2D, and in 12 gene sets, including those corresponding to T2D drug targets (P = 6.1 × 10) and candidate genes from knockout mice (P = 5.2 × 10). Within our study, the strongest T2D gene-level signals for rare variants explain at most 25% of the heritability of the strongest common single-variant signals, and the gene-level effect sizes of the rare variants that we observed in established T2D drug targets will require 75,000-185,000 sequenced cases to achieve exome-wide significance. We propose a method to interpret these modest rare-variant associations and to incorporate these associations into future target or gene prioritization efforts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-019-1231-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6699738PMC
June 2019

Genome-wide association study identifies novel loci for type 2 diabetes-attributed end-stage kidney disease in African Americans.

Hum Genomics 2019 05 15;13(1):21. Epub 2019 May 15.

Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA.

Background: End-stage kidney disease (ESKD) is a significant public health concern disproportionately affecting African Americans (AAs). Type 2 diabetes (T2D) is the leading cause of ESKD in the USA, and efforts to uncover genetic susceptibility to diabetic kidney disease (DKD) have had limited success. A prior genome-wide association study (GWAS) in AAs with T2D-ESKD was expanded with additional AA cases and controls and genotypes imputed to the higher density 1000 Genomes reference panel. The discovery analysis included 3432 T2D-ESKD cases and 6977 non-diabetic non-nephropathy controls (N = 10,409), followed by a discrimination analysis in 2756 T2D non-nephropathy controls to exclude T2D-associated variants.

Results: Six independent variants located in or near RND3/RBM43, SLITRK3, ENPP7, GNG7, and APOL1 achieved genome-wide significant association (P < 5 × 10) with T2D-ESKD. Following extension analyses in 1910 non-diabetic ESKD cases and 908 non-diabetic non-nephropathy controls, a meta-analysis of 5342 AA all-cause ESKD cases and 6977 AA non-diabetic non-nephropathy controls revealed an additional novel all-cause ESKD locus at EFNB2 (rs77113398; P = 9.84 × 10; OR = 1.94). Exclusion of APOL1 renal-risk genotype carriers identified two additional genome-wide significant T2D-ESKD-associated loci at GRAMD3 and MGAT4C. A second variant at GNG7 (rs373971520; P = 2.17 × 10, OR = 1.46) remained associated with all-cause ESKD in the APOL1-negative analysis.

Conclusions: Findings provide further evidence for genetic factors associated with advanced kidney disease in AAs with T2D.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40246-019-0205-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6521376PMC
May 2019

Multi-ancestry genome-wide gene-smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids.

Nat Genet 2019 04 29;51(4):636-648. Epub 2019 Mar 29.

Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA.

The concentrations of high- and low-density-lipoprotein cholesterol and triglycerides are influenced by smoking, but it is unknown whether genetic associations with lipids may be modified by smoking. We conducted a multi-ancestry genome-wide gene-smoking interaction study in 133,805 individuals with follow-up in an additional 253,467 individuals. Combined meta-analyses identified 13 new loci associated with lipids, some of which were detected only because association differed by smoking status. Additionally, we demonstrate the importance of including diverse populations, particularly in studies of interactions with lifestyle factors, where genomic and lifestyle differences by ancestry may contribute to novel findings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0378-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467258PMC
April 2019

Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution.

Nat Genet 2019 03 18;51(3):452-469. Epub 2019 Feb 18.

Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.

Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0334-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560635PMC
March 2019
-->