ChemSusChem 2020 Jan 14;13(1):173-179. Epub 2019 Nov 14.
Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France-CNRS-Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75005, Paris, France.
Electroreduction of CO to CO is one of the simplest ways to valorise CO as a source of carbon. Herein, a cheap, robust, Cu-based hybrid catalyst consisting of a polymer of Cu phthalocyanine coated on carbon nanotubes, which proved to be selective for CO production (80 % faradaic yield) at relatively low overpotentials, was developed. Polymerisation of Cu phthalocyanine was shown to have a drastic effect on the selectivity of the reaction because molecular Cu phthalocyanine was instead selective for proton reduction under the same conditions. Although the material only showed isolated Cu sites in phthalocyanine-like CuN coordination, in situ and operando X-ray absorption spectroscopy showed that, under operating conditions, the Cu atoms were fully converted to Cu nanoparticles, which were likely the catalytically active species. Interestingly, this restructuring of the metal sites was reversible.