Publications by authors named "Dirk Heerwegh"

9 Publications

  • Page 1 of 1

Durable Humoral and Cellular Immune Responses Following Ad26.COV2.S Vaccination for COVID-19.

medRxiv 2021 Jul 7. Epub 2021 Jul 7.

Interim immunogenicity and efficacy data for the Ad26.COV2.S vaccine for COVID-19 have recently been reported . We describe here the 8-month durability of humoral and cellular immune responses in 20 individuals who received one or two doses of 5Ã-10 vp or 10 vp Ad26.COV2.S and in 5 participants who received placebo . We evaluated antibody and T cell responses on day 239, which was 8 months after the single-shot vaccine regimen (N=10) or 6 months after the two-shot vaccine regimen (N=10), although the present study was not powered to compare these regimens . We also report neutralizing antibody responses against the parental SARS-CoV-2 WA1/2020 strain as well as against the SARS-CoV-2 variants D614G, B.1.1.7 (alpha), B.1.617.1 (kappa), B.1.617.2 (delta), P.1 (gamma), B.1.429 (epsilon), and B.1.351 (beta).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.07.05.21259918DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282116PMC
July 2021

Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans.

Nature 2021 Jun 9. Epub 2021 Jun 9.

Janssen Vaccines & Prevention, Leiden, The Netherlands.

The Ad26.COV2.S vaccine has demonstrated clinical efficacy against symptomatic COVID-19, including against the B.1.351 variant that is partially resistant to neutralizing antibodies. However, the immunogenicity of this vaccine in humans against SARS-CoV-2 variants of concern remains unclear. Here we report humoral and cellular immune responses from 20 Ad26.COV2.S vaccinated individuals from the COV1001 phase I-IIa clinical trial against the original SARS-CoV-2 strain WA1/2020 as well as against the B.1.1.7, CAL.20C, P.1 and B.1.351 variants of concern. Ad26.COV2.S induced median pseudovirus neutralizing antibody titres that were 5.0-fold and 3.3-fold lower against the B.1.351 and P.1 variants, respectively, as compared with WA1/2020 on day 71 after vaccination. Median binding antibody titres were 2.9-fold and 2.7-fold lower against the B.1.351 and P.1 variants, respectively, as compared with WA1/2020. Antibody-dependent cellular phagocytosis, complement deposition and natural killer cell activation responses were largely preserved against the B.1.351 variant. CD8 and CD4 T cell responses, including central and effector memory responses, were comparable among the WA1/2020, B.1.1.7, B.1.351, P.1 and CAL.20C variants. These data show that neutralizing antibody responses induced by Ad26.COV2.S were reduced against the B.1.351 and P.1 variants, but functional non-neutralizing antibody responses and T cell responses were largely preserved against SARS-CoV-2 variants. These findings have implications for vaccine protection against SARS-CoV-2 variants of concern.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03681-2DOI Listing
June 2021

Immunogenicity of the Ad26.COV2.S Vaccine for COVID-19.

JAMA 2021 04;325(15):1535-1544

Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts.

Importance: Control of the global COVID-19 pandemic will require the development and deployment of safe and effective vaccines.

Objective: To evaluate the immunogenicity of the Ad26.COV2.S vaccine (Janssen/Johnson & Johnson) in humans, including the kinetics, magnitude, and phenotype of SARS-CoV-2 spike-specific humoral and cellular immune responses.

Design, Setting, And Participants: Twenty-five participants were enrolled from July 29, 2020, to August 7, 2020, and the follow-up for this day 71 interim analysis was completed on October 3, 2020; follow-up to assess durability will continue for 2 years. This study was conducted at a single clinical site in Boston, Massachusetts, as part of a randomized, double-blind, placebo-controlled phase 1 clinical trial of Ad26.COV2.S.

Interventions: Participants were randomized to receive 1 or 2 intramuscular injections with 5 × 1010 viral particles or 1 × 1011 viral particles of Ad26.COV2.S vaccine or placebo administered on day 1 and day 57 (5 participants in each group).

Main Outcomes And Measures: Humoral immune responses included binding and neutralizing antibody responses at multiple time points following immunization. Cellular immune responses included immunospot-based and intracellular cytokine staining assays to measure T-cell responses.

Results: Twenty-five participants were randomized (median age, 42; age range, 22-52; 52% women, 44% male, 4% undifferentiated), and all completed the trial through the day 71 interim end point. Binding and neutralizing antibodies emerged rapidly by day 8 after initial immunization in 90% and 25% of vaccine recipients, respectively. By day 57, binding and neutralizing antibodies were detected in 100% of vaccine recipients after a single immunization. On day 71, the geometric mean titers of spike-specific binding antibodies were 2432 to 5729 and the geometric mean titers of neutralizing antibodies were 242 to 449 in the vaccinated groups. A variety of antibody subclasses, Fc receptor binding properties, and antiviral functions were induced. CD4+ and CD8+ T-cell responses were induced.

Conclusion And Relevance: In this phase 1 study, a single immunization with Ad26.COV2.S induced rapid binding and neutralization antibody responses as well as cellular immune responses. Two phase 3 clinical trials are currently underway to determine the efficacy of the Ad26.COV2.S vaccine.

Trial Registration: ClinicalTrials.gov Identifier: NCT04436276.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jama.2021.3645DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7953339PMC
April 2021

Vaccines based on replication incompetent Ad26 viral vectors: Standardized template with key considerations for a risk/benefit assessment.

Vaccine 2021 05 3;39(22):3081-3101. Epub 2020 Oct 3.

Brighton Collaboration, A Program of the Task Force for Global Health, Decatur, GA, USA.

Replication-incompetent adenoviral vectors have been under investigation as a platform to carry a variety of transgenes, and express them as a basis for vaccine development. A replication-incompetent adenoviral vector based on human adenovirus type 26 (Ad26) has been evaluated in several clinical trials. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety and features of recombinant viral vector vaccines. This paper reviews features of the Ad26 vectors, including tabulation of safety and risk assessment characteristics of Ad26-based vaccines. In the Ad26 vector, deletion of E1 gene rendering the vector replication incompetent is combined with additional genetic engineering for vaccine manufacturability and transgene expression optimization. These vaccines can be manufactured in mammalian cell lines at scale providing an effective, flexible system for high-yield manufacturing. Ad26 vector vaccines have favorable thermostability profiles, compatible with vaccine supply chains. Safety data are compiled in the Ad26 vaccine safety database version 4.0, with unblinded data from 23 ongoing and completed clinical studies for 3912 participants in five different Ad26-based vaccine programs. Overall, Ad26-based vaccines have been well tolerated, with no significant safety issues identified. Evaluation of Ad26-based vaccines is continuing, with >114,000 participants vaccinated as of 4th September 2020. Extensive evaluation of immunogenicity in humans shows strong, durable humoral and cellular immune responses. Clinical trials have not revealed impact of pre-existing immunity to Ad26 on vaccine immunogenicity, even in the presence of Ad26 neutralizing antibody titers or Ad26-targeting T cell responses at baseline. The first Ad26-based vaccine, against Ebola virus, received marketing authorization from EC on 1st July 2020, as part of the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen. New developments based on Ad26 vectors are underway, including a COVID-19 vaccine, which is currently in phase 3 of clinical evaluation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2020.09.018DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7532807PMC
May 2021

A Double-Blind, Randomized, Placebo-Controlled Phase 1 Study of Ad26.ZIKV.001, an Ad26-Vectored Anti-Zika Virus Vaccine.

Ann Intern Med 2021 05 16;174(5):585-594. Epub 2021 Feb 16.

Beth Israel Deaconess Medical Center, Boston, Massachusetts (K.E.S., D.G.K., R.A.L., P.A., J.L., L.P., D.H.B.).

Background: Zika virus (ZIKV) may cause severe congenital disease after maternal-fetal transmission. No vaccine is currently available.

Objective: To assess the safety and immunogenicity of Ad26.ZIKV.001, a prophylactic ZIKV vaccine candidate.

Design: Phase 1 randomized, double-blind, placebo-controlled clinical study. (ClinicalTrials.gov: NCT03356561).

Setting: United States.

Participants: 100 healthy adult volunteers.

Intervention: Ad26.ZIKV.001, an adenovirus serotype 26 vector encoding ZIKV M-Env, administered in 1- or 2-dose regimens of 5 × 10 or 1 × 10 viral particles (vp), or placebo.

Measurements: Local and systemic adverse events; neutralization titers by microneutralization assay (MN50) and T-cell responses by interferon-γ enzyme-linked immunospot and intracellular cytokine staining; and protectivity of vaccine-induced antibodies in a subset of participants through transfer in an exploratory mouse ZIKV challenge model.

Results: All regimens were well tolerated, with no safety concerns identified. In both 2-dose regimens, ZIKV neutralizing titers peaked 14 days after the second vaccination, with geometric mean MN50 titers (GMTs) of 1065.6 (95% CI, 494.9 to 2294.5) for 5 × 10 vp and 956.6 (595.8 to 1535.8) for 1 × 10 vp. Titers persisted for at least 1 year at a GMT of 68.7 (CI, 26.4-178.9) for 5 × 10 vp and 87.0 (CI, 29.3 to 258.6) for 1 × 10 vp. A 1-dose regimen of 1 × 10 vp Ad26.ZIKV.001 induced seroconversion in all participants 56 days after the first vaccination (GMT, 103.4 [CI, 52.7 to 202.9]), with titers persisting for at least 1 year (GMT, 90.2 [CI, 38.4 to 212.2]). Env-specific cellular responses were induced. Protection against ZIKV challenge was observed after antibody transfer from participants into mice, and MN50 titers correlated with protection in this model.

Limitation: The study was conducted in a nonendemic area, so it did not assess safety and immunogenicity in a flavivirus-exposed population.

Conclusion: The safety and immunogenicity profile makes Ad26.ZIKV.001 a promising candidate for further development if the need reemerges.

Primary Funding Source: Janssen Vaccines and Infectious Diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7326/M20-5306DOI Listing
May 2021

Interim Results of a Phase 1-2a Trial of Ad26.COV2.S Covid-19 Vaccine.

N Engl J Med 2021 05 13;384(19):1824-1835. Epub 2021 Jan 13.

From Janssen Vaccines and Prevention, Leiden, the Netherlands (J. Sadoff, M.L.G., G. Shukarev, A.M.G., J. Stoop, S.T., E.C., G. Scheper, J. Hendriks, M.D., J.V.H., H.S.); Janssen Research and Development, Beerse (D.H., C.T., F.S.), Janssen Clinical Pharmacology Unit, Merksem (W.V.D.), the Center for Vaccinology, Ghent University, Gent (I.L.-R.), SGS Life Sciences (P.-J.B.) and the Center for the Evaluation of Vaccination, University of Antwerp (P.V.D.), Antwerp, and the Center for Clinical Pharmacology, University Hospitals Leuven, Leuven (J. de Hoon) - all in Belgium; Optimal Research, Melbourne, FL (M.K.); the Alliance for Multispecialty Research, Knoxville, TN (W.S.); the Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston (K.E.S., D.H.B.); and the Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle (S.C.D.R., K.W.C., M.J.M.).

Background: Efficacious vaccines are urgently needed to contain the ongoing coronavirus disease 2019 (Covid-19) pandemic of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A candidate vaccine, Ad26.COV2.S, is a recombinant, replication-incompetent adenovirus serotype 26 (Ad26) vector encoding a full-length and stabilized SARS-CoV-2 spike protein.

Methods: In this multicenter, placebo-controlled, phase 1-2a trial, we randomly assigned healthy adults between the ages of 18 and 55 years (cohort 1) and those 65 years of age or older (cohort 3) to receive the Ad26.COV2.S vaccine at a dose of 5×10 viral particles (low dose) or 1×10 viral particles (high dose) per milliliter or placebo in a single-dose or two-dose schedule. Longer-term data comparing a single-dose regimen with a two-dose regimen are being collected in cohort 2; those results are not reported here. The primary end points were the safety and reactogenicity of each dose schedule.

Results: After the administration of the first vaccine dose in 805 participants in cohorts 1 and 3 and after the second dose in cohort 1, the most frequent solicited adverse events were fatigue, headache, myalgia, and injection-site pain. The most frequent systemic adverse event was fever. Systemic adverse events were less common in cohort 3 than in cohort 1 and in those who received the low vaccine dose than in those who received the high dose. Reactogenicity was lower after the second dose. Neutralizing-antibody titers against wild-type virus were detected in 90% or more of all participants on day 29 after the first vaccine dose (geometric mean titer [GMT], 212 to 354), regardless of vaccine dose or age group, and reached 96% by day 57 with a further increase in titers (GMT, 288 to 488) in cohort 1a. Titers remained stable until at least day 71. A second dose provided an increase in the titer by a factor of 2.6 to 2.9 (GMT, 827 to 1266). Spike-binding antibody responses were similar to neutralizing-antibody responses. On day 15, CD4+ T-cell responses were detected in 76 to 83% of the participants in cohort 1 and in 60 to 67% of those in cohort 3, with a clear skewing toward type 1 helper T cells. CD8+ T-cell responses were robust overall but lower in cohort 3.

Conclusions: The safety and immunogenicity profiles of Ad26.COV2.S support further development of this vaccine candidate. (Funded by Johnson & Johnson and the Biomedical Advanced Research and Development Authority of the Department of Health and Human Services; COV1001 ClinicalTrials.gov number, NCT04436276.).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa2034201DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7821985PMC
May 2021

Safety and immunogenicity of RTS,S/AS01 malaria vaccine in infants and children with WHO stage 1 or 2 HIV disease: a randomised, double-blind, controlled trial.

Lancet Infect Dis 2016 Oct 7;16(10):1134-1144. Epub 2016 Jul 7.

Division of Parasitic Diseases and Malaria, Centers for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.

Background: Malaria remains a major global public health concern, especially in sub-Saharan Africa. The RTS,S/AS01 malaria candidate vaccine was reviewed by the European Medicines Agency and received a positive scientific opinion; WHO subsequently recommended pilot implementation in sub-Saharan African countries. Because malaria and HIV overlap geographically, HIV-infected children should be considered for RTS,S/AS01 vaccination. We therefore aimed to assess the safety of RTS,S/AS01 in HIV-infected children at two sites in western Kenya.

Methods: We did a randomised, double-blind, controlled trial at the clinical trial sites of the Kenya Medical Research Institute (KEMRI)-Walter Reed Army Institute of research in Kisumu and the KEMRI/US Centers for Disease Control and Prevention in Siaya. Eligible participants were infants and children aged from 6 weeks to 17 months with WHO stage 1 or 2 HIV disease (documented positive by DNA PCR), whether or not they were receiving antiretroviral therapy (ART). We randomly assigned participants (1:1) to receive three doses of either RTS,S/AS01 or rabies vaccine (both 0·5 mL per dose by intramuscular injection), given once per month at 0, 1, and 2 months. We did the treatment allocation using a web-based central randomisation system stratified by age (6 weeks-4 months, 5-17 months), and by baseline CD4% (<10, 10-14, 15-19, and ≥20). Data were obtained in an observer-blind manner, and the vaccine recipient, their parent or carer, the funder, and investigators responsible for the assessment of endpoints were all masked to treatment allocation (only staff responsible for the preparation and administration of the vaccines were aware of the assignment and these individuals played no other role in the study). We provided ART, even if the participants were not receiving ART before the study, and daily co-trimoxazole for prevention of opportunistic infections. The primary outcome was the occurrence of serious adverse events until 14 months after dose 1 of the vaccine, assessed in the intention-to-treat population. This trial was registered at ClinicalTrials.gov, number NCT01148459.

Findings: Between July 30, 2010, and May 24, 2013, we enrolled 200 children to our study and randomly assigned 99 to receive RTS,S/AS01 and 101 to receive rabies vaccine. 177 (89%) of the 200 children enrolled completed 14 months of follow-up. Serious adverse events were noted in 41 (41·4%, 95% CI 31·6-51·8) of 99 RTS,S/AS01 recipients and 37 (36·6%, 27·3-46·8) of 101 rabies-vaccine recipients (relative risk 1·1, 95% CI 0·8-1·6). 20 (20·2%, 95% CI 12·8-29·5) of 99 RTS,S/AS01 recipients and 12 (11·9%, 6·3-19·8) of 101 rabies-vaccine recipients had at least one serious adverse event within 30 days after vaccination, mainly pneumonia, febrile convulsions, and salmonella sepsis. Five (5·1%, 95% CI 1·7-11·4) of 99 RTS,S/AS01 recipients and four (4·0%, 1·1-9·8) of 101 rabies-vaccine recipients died, but no deaths were deemed related to vaccination. Mortality was associated with five cases of pneumonia (1% RTS,S/AS01 recipients vs 3% rabies-vaccine recipients), five cases of gastroenteritis (3% RTS,S/AS01 recipients vs 2% rabies-vaccine recipients), five cases of malnutrition (2% RTS,S/AS01 recipients vs 3% rabies-vaccine recipients), one case of sepsis (1% rabies-vaccine recipients), one case of Haemophilus influenza meningitis (1% rabies-vaccine recipients), and one case of tuberculosis (1% RTS,S/AS01 recipients).

Interpretation: RTS, S/AS01 was well tolerated when given to children with WHO clinical stage 1 or 2 HIV disease along with high antiretroviral and co-trimoxazole use. Children with HIV disease could be included in future RTS,S/AS01 vaccination programmes.

Funding: GlaxoSmithKline Biologicals SA and PATH Malaria Vaccine Initiative.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1473-3099(16)30161-XDOI Listing
October 2016

Ad35.CS.01-RTS,S/AS01 Heterologous Prime Boost Vaccine Efficacy against Sporozoite Challenge in Healthy Malaria-Naïve Adults.

PLoS One 2015 6;10(7):e0131571. Epub 2015 Jul 6.

GSK Vaccines, Rixensart, Belgium.

Methods: In an observer blind, phase 2 trial, 55 adults were randomized to receive one dose of Ad35.CS.01 vaccine followed by two doses of RTS,S/AS01 (ARR-group) or three doses of RTS,S/AS01 (RRR-group) at months 0, 1, 2 followed by controlled human malaria infection.

Results: ARR and RRR vaccine regimens were well tolerated. Efficacy of ARR and RRR groups after controlled human malaria infection was 44% (95% confidence interval 21%-60%) and 52% (25%-70%), respectively. The RRR-group had greater anti-CS specific IgG titers than did the ARR-group. There were higher numbers of CS-specific CD4 T-cells expressing > 2 cytokine/activation markers and more ex vivo IFN-γ enzyme-linked immunospots in the ARR-group than the RRR-group. Protected subjects had higher CS-specific IgG titers than non-protected subjects (geometric mean titer, 120.8 vs 51.8 EU/ml, respectively; P = .001).

Conclusions: An increase in vaccine efficacy of ARR-group over RRR-group was not achieved. Future strategies to improve upon RTS,S-induced protection may need to utilize alternative highly immunogenic prime-boost regimens and/or additional target antigens.

Trial Registration: ClinicalTrials.gov NCT01366534.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131571PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492580PMC
March 2016
-->