Publications by authors named "Dionna Scharton"

14 Publications

  • Page 1 of 1

The N501Y spike substitution enhances SARS-CoV-2 infection and transmission.

Nature 2021 Nov 24. Epub 2021 Nov 24.

Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.

Beginning in the summer of 2020, a variant of SARS-CoV-2, the cause of the COVID-19 pandemic, emerged in the United Kingdom. This B.1.1.7 variant, also known as Alpha, increased rapidly in prevalence, attributed to an increase in infection and/or transmission efficiency. The Alpha variant has 19 nonsynonymous mutations across its viral genome, including 8 substitutions or deletions in the spike protein, which interacts with cellular receptors to mediate infection and tropism. Here, using a reverse genetics approach, we show that, of the 8 individual spike protein substitutions, only N501Y exhibited consistent fitness gains for replication in the upper airway in the hamster model as well as primary human airway epithelial cells. The N501Y substitution recapitulated the phenotype of enhanced viral transmission seen with the combined 8 Alpha spike mutations, suggesting it is a major determinant of increased transmission of this variant. Mechanistically, the N501Y substitution improved the affinity of the viral spike protein for cellular receptors. As suggested by its convergent evolution in Brazil, South Africa, and elsewhere, our results indicate that N501Y substitution is a major adaptive spike mutation of major concern.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-04245-0DOI Listing
November 2021

Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis.

bioRxiv 2021 Oct 15. Epub 2021 Oct 15.

While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203-205 in SARS-CoV-2 nucleocapsid protein. Recreating the alpha variant mutation in an early pandemic (WA-1) background, we found that the R203K/G204R mutation is sufficient to enhance replication, fitness, and pathogenesis of SARS-CoV-2. Importantly, the R203K/G204R mutation increases nucleocapsid phosphorylation, providing a molecular basis for these phenotypes. Notably, an analogous alanine substitution mutant also increases SARS-CoV-2 fitness and phosphorylation, suggesting that infection is enhanced through ablation of the ancestral 'RG' motif. Overall, these results demonstrate that variant mutations outside spike are also key components in SARS-CoV-2's continued adaptation to human infection.

One-sentence Summary: A mutation in the nucleocapsid gene of the SARS-CoV-2 alpha variant is found to enhance replication, fitness, and pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.10.14.464390DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528077PMC
October 2021

The N501Y spike substitution enhances SARS-CoV-2 transmission.

bioRxiv 2021 Mar 9. Epub 2021 Mar 9.

Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston TX, USA.

Beginning in the summer of 2020, a variant of SARS-CoV-2, the cause of the COVID-19 pandemic, emerged in the United Kingdom (UK). This B.1.1.7 variant increased rapidly in prevalence among sequenced strains, attributed to an increase in infection and/or transmission efficiency. The UK variant has 19 nonsynonymous mutations across its viral genome including 8 substitutions or deletions in the spike protein, which interacts with cellular receptors to mediate infection and tropism. Here, using a reverse genetics approach, we show that, of the 8 individual spike protein substitutions, only N501Y exhibited consistent fitness gains for replication in the upper airway in the hamster model as well as primary human airway epithelial cells. The N501Y substitution recapitulated the phenotype of enhanced viral transmission seen with the combined 8 UK spike mutations, suggesting it is a major determinant responsible for increased transmission of this variant. Mechanistically, the N501Y substitution improved the affinity of the viral spike protein for cellular receptors. As suggested by its convergent evolution in Brazil and South Africa, our results indicate that N501Y substitution is a major adaptive spike mutation of major concern.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.03.08.434499DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986995PMC
March 2021

Spike mutation D614G alters SARS-CoV-2 fitness.

Nature 2021 04 26;592(7852):116-121. Epub 2020 Oct 26.

Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein substitution D614G became dominant during the coronavirus disease 2019 (COVID-19) pandemic. However, the effect of this variant on viral spread and vaccine efficacy remains to be defined. Here we engineered the spike D614G substitution in the USA-WA1/2020 SARS-CoV-2 strain, and found that it enhances viral replication in human lung epithelial cells and primary human airway tissues by increasing the infectivity and stability of virions. Hamsters infected with SARS-CoV-2 expressing spike(D614G) (G614 virus) produced higher infectious titres in nasal washes and the trachea, but not in the lungs, supporting clinical evidence showing that the mutation enhances viral loads in the upper respiratory tract of COVID-19 patients and may increase transmission. Sera from hamsters infected with D614 virus exhibit modestly higher neutralization titres against G614 virus than against D614 virus, suggesting that the mutation is unlikely to reduce the ability of vaccines in clinical trials to protect against COVID-19, and that therapeutic antibodies should be tested against the circulating G614 virus. Together with clinical findings, our work underscores the importance of this variant in viral spread and its implications for vaccine efficacy and antibody therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-2895-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8158177PMC
April 2021

Spike mutation D614G alters SARS-CoV-2 fitness and neutralization susceptibility.

Res Sq 2020 Sep 10. Epub 2020 Sep 10.

The University of Texas Medical Branch at Galveston.

A spike protein mutation D614G became dominant in SARS-CoV-2 during the COVID-19 pandemic. However, the mutational impact on viral spread and vaccine efficacy remains to be defined. Here we engineer the D614G mutation in the SARS-CoV-2 USA-WA1/2020 strain and characterize its effect on viral replication, pathogenesis, and antibody neutralization. The D614G mutation significantly enhances SARS-CoV-2 replication on human lung epithelial cells and primary human airway tissues, through an improved infectivity of virions with the spike receptor-binding domain in an "up" conformation for binding to ACE2 receptor. Hamsters infected with D614 or G614 variants developed similar levels of weight loss. However, the G614 virus produced higher infectious titers in the nasal washes and trachea, but not lungs, than the D614 virus. The hamster results confirm clinical evidence that the D614G mutation enhances viral loads in the upper respiratory tract of COVID-19 patients and may increases transmission. For antibody neutralization, sera from D614 virus-infected hamsters consistently exhibit higher neutralization titers against G614 virus than those against D614 virus, indicating that (i) the mutation may not reduce the ability of vaccines in clinical trials to protect against COVID-19 and (ii) therapeutic antibodies should be tested against the circulating G614 virus before clinical development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.21203/rs.3.rs-70482/v1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7491579PMC
September 2020

Spike mutation D614G alters SARS-CoV-2 fitness and neutralization susceptibility.

bioRxiv 2020 Sep 2. Epub 2020 Sep 2.

Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston TX, USA.

A spike protein mutation D614G became dominant in SARS-CoV-2 during the COVID-19 pandemic. However, the mutational impact on viral spread and vaccine efficacy remains to be defined. Here we engineer the D614G mutation in the SARS-CoV-2 USA-WA1/2020 strain and characterize its effect on viral replication, pathogenesis, and antibody neutralization. The D614G mutation significantly enhances SARS-CoV-2 replication on human lung epithelial cells and primary human airway tissues, through an improved infectivity of virions with the spike receptor-binding domain in an "up" conformation for binding to ACE2 receptor. Hamsters infected with D614 or G614 variants developed similar levels of weight loss. However, the G614 virus produced higher infectious titers in the nasal washes and trachea, but not lungs, than the D614 virus. The hamster results confirm clinical evidence that the D614G mutation enhances viral loads in the upper respiratory tract of COVID-19 patients and may increases transmission. For antibody neutralization, sera from D614 virus-infected hamsters consistently exhibit higher neutralization titers against G614 virus than those against D614 virus, indicating that (i) the mutation may not reduce the ability of vaccines in clinical trials to protect against COVID-19 and (ii) therapeutic antibodies should be tested against the circulating G614 virus before clinical development.

Importance: Understanding the evolution of SARS-CoV-2 during the COVID-19 pandemic is essential for disease control and prevention. A spike protein mutation D614G emerged and became dominant soon after the pandemic started. By engineering the D614G mutation into an authentic wild-type SARS-CoV-2 strain, we demonstrate the importance of this mutation to (i) enhanced viral replication on human lung epithelial cells and primary human airway tissues, (ii) improved viral fitness in the upper airway of infected hamsters, and (iii) increased susceptibility to neutralization. Together with clinical findings, our work underscores the importance of this mutation in viral spread, vaccine efficacy, and antibody therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.09.01.278689DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480025PMC
September 2020

Isolation and characterization of SARS-CoV-2 from the first US COVID-19 patient.

bioRxiv 2020 Mar 7. Epub 2020 Mar 7.

Department of Microbiology and Immunology, Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston TX, USA.

The etiologic agent of the outbreak of pneumonia in Wuhan China was identified as severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) in January, 2020. The first US patient was diagnosed by the State of Washington and the US Centers for Disease Control and Prevention on January 20, 2020. We isolated virus from nasopharyngeal and oropharyngeal specimens, and characterized the viral sequence, replication properties, and cell culture tropism. We found that the virus replicates to high titer in Vero-CCL81 cells and Vero E6 cells in the absence of trypsin. We also deposited the virus into two virus repositories, making it broadly available to the public health and research communities. We hope that open access to this important reagent will expedite development of medical countermeasures.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.03.02.972935DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239045PMC
March 2020

Severe Acute Respiratory Syndrome Coronavirus 2 from Patient with Coronavirus Disease, United States.

Emerg Infect Dis 2020 06 17;26(6):1266-1273. Epub 2020 Jun 17.

The etiologic agent of an outbreak of pneumonia in Wuhan, China, was identified as severe acute respiratory syndrome coronavirus 2 in January 2020. A patient in the United States was given a diagnosis of infection with this virus by the state of Washington and the US Centers for Disease Control and Prevention on January 20, 2020. We isolated virus from nasopharyngeal and oropharyngeal specimens from this patient and characterized the viral sequence, replication properties, and cell culture tropism. We found that the virus replicates to high titer in Vero-CCL81 cells and Vero E6 cells in the absence of trypsin. We also deposited the virus into 2 virus repositories, making it broadly available to the public health and research communities. We hope that open access to this reagent will expedite development of medical countermeasures.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3201/eid2606.200516DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7258473PMC
June 2020

MP-12 virus containing the clone 13 deletion in the NSs gene prevents lethal disease when administered after Rift Valley fever virus infection in hamsters.

Front Microbiol 2015 29;6:651. Epub 2015 Jun 29.

Department of Pathology, The University of Texas Medical Branch , Galveston, TX, USA ; Sealy Center for Vaccine Development, The University of Texas Medical Branch , Galveston, TX, USA ; Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch , Galveston, TX, USA.

Rift Valley fever virus (RVFV; Bunyaviridae, Phlebovirus) causes a range of illnesses that include retinitis, fulminant hepatitis, neurologic disease, and hemorrhagic fever. In hospitalized individuals, case fatality rates can be as high as 10-20%. There are no vaccines or antivirals approved for human use to prevent or treat severe RVFV infections. We previously tested the efficacy of the MP-12 vaccine strain and related variants with NSs truncations as a post-exposure prophylaxis in mice infected with wild-type pathogenic RVFV strain ZH501. Post-exposure efficacy of the rMP12-C13type, a recombinant MP-12 vaccine virus which encodes an in-frame truncation removing 69% of the NSs protein, resulted in 30% survival when administering the virus within 30 min of subcutaneous ZH501 challenge in mice, while the parental MP-12 virus conferred no protection by post-exposure vaccination. Here, we demonstrate uniform protection of hamsters by post-exposure vaccination with rMP12-C13type administered 6 h post-ZH501 infection while no efficacy was observed with the parental MP-12 virus. Notably, both the MP-12 and rMP12-C13type viruses were highly effective (100% protection) when administered 21 days prior to challenge. In a subsequent study delaying vaccination until 8, 12, and 24 h post-RVFV exposure, we observed 80, 70, and 30% survival, respectively. Our findings indicate that the rapid protective innate immune response elicited by rMP12-C13type may be due to the truncated NSs protein, suggesting that the resulting functional inactivation of NSs plays an important role in the observed post-exposure efficacy. Taken together, the data demonstrate that post-exposure vaccination with rMP12-C13type is effective in limiting ZH501 replication and associated disease in standard pre-exposure vaccination and post-challenge treatment models of RVFV infection, and suggest an extended post-exposure prophylaxis window beyond that initially observed in mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fmicb.2015.00651DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4484224PMC
July 2015

Rift Valley fever virus infection in golden Syrian hamsters.

PLoS One 2015 21;10(1):e0116722. Epub 2015 Jan 21.

Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, United States of America; Institute for Antiviral Research, Utah State University, Logan, Utah, United States of America; School of Veterinary Medicine, Utah State University, Logan, Utah, United States of America.

Rift Valley fever virus (RVFV) is a formidable pathogen that causes severe disease and abortion in a variety of livestock species and a range of disease in humans that includes hemorrhagic fever, fulminant hepatitis, encephalitis and blindness. The natural transmission cycle involves mosquito vectors, but exposure can also occur through contact with infected fluids and tissues. The lack of approved antiviral therapies and vaccines for human use underlies the importance of small animal models for proof-of-concept efficacy studies. Several mouse and rat models of RVFV infection have been well characterized and provide useful systems for the study of certain aspects of pathogenesis, as well as antiviral drug and vaccine development. However, certain host-directed therapeutics may not act on mouse or rat pathways. Here, we describe the natural history of disease in golden Syrian hamsters challenged subcutaneously with the pathogenic ZH501 strain of RVFV. Peracute disease resulted in rapid lethality within 2 to 3 days of RVFV challenge. High titer viremia and substantial viral loads were observed in most tissues examined; however, histopathology and immunostaining for RVFV antigen were largely restricted to the liver. Acute hepatocellular necrosis associated with a strong presence of viral antigen in the hepatocytes indicates that fulminant hepatitis is the likely cause of mortality. Further studies to assess the susceptibility and disease progression following respiratory route exposure are warranted. The use of the hamsters to model RVFV infection is suitable for early stage antiviral drug and vaccine development studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0116722PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4301868PMC
January 2016

Single-dose intranasal treatment with DEF201 (adenovirus vectored consensus interferon) prevents lethal disease due to Rift Valley fever virus challenge.

Viruses 2014 Mar 24;6(3):1410-23. Epub 2014 Mar 24.

Defyrus Inc., 2 Bloor Street W, Suite 2602, Toronto, Ontario, M4W 3E2, Canada.

Rift Valley fever virus (RVFV) causes severe disease in humans and ungulates. The virus can be transmitted by mosquitoes, direct contact with infected tissues or fluids, or aerosol, making it a significant biological threat for which there is no approved vaccine or therapeutic. Herein we describe the evaluation of DEF201, an adenovirus-vectored interferon alpha which addresses the limitations of recombinant interferon alpha protein (cost, short half-life), as a pre- and post-exposure treatment in a lethal hamster RVFV challenge model. DEF201 was delivered intranasally to stimulate mucosal immunity and effectively bypass any pre-existing immunity to the vector. Complete protection against RVFV infection was observed from a single dose of DEF201 administered one or seven days prior to challenge while all control animals succumbed within three days of infection. Efficacy of treatment administered two weeks prior to challenge was limited. Post‑exposure, DEF201 was able to confer significant protection when dosed at 30 min or 6 h, but not at 24 h post-RVFV challenge. Protection was associated with reductions in serum and tissue viral loads. Our findings suggest that DEF201 may be a useful countermeasure against RVFV infection and further demonstrates its broad-spectrum capacity to stimulate single dose protective immunity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/v6031410DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970158PMC
March 2014

Favipiravir (T-705) protects against peracute Rift Valley fever virus infection and reduces delayed-onset neurologic disease observed with ribavirin treatment.

Antiviral Res 2014 Apr 31;104:84-92. Epub 2014 Jan 31.

Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA; Institute for Antiviral Research, Utah State University, Logan, UT, USA; School of Veterinary Medicine, Utah State University, Logan, UT, USA. Electronic address:

Rift Valley fever is a zoonotic, arthropod-borne disease that affects livestock and humans. The etiologic agent, Rift Valley fever virus (RVFV; Bunyaviridae, Phlebovirus) is primarily transmitted through mosquito bites, but can also be transmitted by exposure to infectious aerosols. There are presently no licensed vaccines or therapeutics to prevent or treat severe RVFV infection in humans. We have previously reported on the activity of favipiravir (T-705) against the MP-12 vaccine strain of RVFV and other bunyaviruses in cell culture. In addition, efficacy has also been documented in mouse and hamster models of infection with the related Punta Toro virus. Here, hamsters challenged with the highly pathogenic ZH501 strain of RVFV were used to evaluate the activity of favipiravir against lethal infection. Subcutaneous RVFV challenge resulted in substantial serum and tissue viral loads and caused severe disease and mortality within 2-3 days of infection. Oral favipiravir (200 mg/kg/day) prevented mortality in 60% or greater of hamsters challenged with RVFV when administered within 1 or 6h post-exposure and reduced RVFV titers in serum and tissues relative to the time of treatment initiation. In contrast, although ribavirin (75 mg/kg/day) was effective at protecting animals from the peracute RVFV disease, most ultimately succumbed from a delayed-onset neurologic disease associated with high RVFV burden observed in the brain in moribund animals. When combined, T-705 and ribavirin treatment started 24 h post-infection significantly improved survival outcome and reduced serum and tissue virus titers compared to monotherapy. Our findings demonstrate significant post-RVFV exposure efficacy with favipiravir against both peracute disease and delayed-onset neuroinvasion, and suggest added benefit when combined with ribavirin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2014.01.016DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3975078PMC
April 2014

Post-exposure vaccination with MP-12 lacking NSs protects mice against lethal Rift Valley fever virus challenge.

Antiviral Res 2013 May 21;98(2):135-43. Epub 2013 Mar 21.

Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA.

Rift Valley fever virus (RVFV) causes severe disease in humans and livestock. There are currently no approved antivirals or vaccines for the treatment or prevention of RVF disease in humans. A major virulence factor of RVFV is the NSs protein, which inhibits host transcription including the interferon (IFN)-β gene and promotes the degradation of dsRNA-dependent protein kinase, PKR. We analyzed the efficacy of the live-attenuated MP-12 vaccine strain and MP-12 variants that lack the NSs protein as post-exposure vaccinations. Although parental MP-12 failed to elicit a protective effect in mice challenged with wild-type (wt) RVFV by the intranasal route, significant protection was demonstrated by vaccination with MP-12 strains lacking NSs when they were administered at 20-30 min post-exposure. Viremia and virus replication in liver, spleen and brain were also inhibited by post-exposure vaccination with MP-12 lacking NSs. The protective effect was mostly lost when vaccination was delayed 6 or 24 h after intranasal RVFV challenge. When mice were challenged subcutaneously, efficacy of MP-12 lacking NSs was diminished, most likely due to more rapid dissemination of wt RVFV. Our findings suggest that post-exposure vaccination with MP-12 lacking NSs may be developed as a novel post-exposure treatment to prevent RVF.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2013.03.009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665270PMC
May 2013
-->