Publications by authors named "Dick J Veltman"

318 Publications

Contributing factors to advanced brain aging in depression and anxiety disorders.

Transl Psychiatry 2021 07 21;11(1):402. Epub 2021 Jul 21.

Department of Psychiatry, Amsterdam University Medical Centers, Vrije Universiteit and GGZ inGeest, Amsterdam Neuroscience, Amsterdam, The Netherlands.

Depression and anxiety are common and often comorbid mental health disorders that represent risk factors for aging-related conditions. Brain aging has shown to be more advanced in patients with major depressive disorder (MDD). Here, we extend prior work by investigating multivariate brain aging in patients with MDD, anxiety disorders, or both, and examine which factors contribute to older-appearing brains. Adults aged 18-57 years from the Netherlands Study of Depression and Anxiety underwent structural MRI. A pretrained brain-age prediction model based on >2000 samples from the ENIGMA consortium was applied to obtain brain-predicted age differences (brain PAD, predicted brain age minus chronological age) in 65 controls and 220 patients with current MDD and/or anxiety. Brain-PAD estimates were associated with clinical, somatic, lifestyle, and biological factors. After correcting for antidepressant use, brain PAD was significantly higher in MDD (+2.78 years, Cohen's d = 0.25, 95% CI -0.10-0.60) and anxiety patients (+2.91 years, Cohen's d = 0.27, 95% CI -0.08-0.61), compared with controls. There were no significant associations with lifestyle or biological stress systems. A multivariable model indicated unique contributions of higher severity of somatic depression symptoms (b = 4.21 years per unit increase on average sum score) and antidepressant use (-2.53 years) to brain PAD. Advanced brain aging in patients with MDD and anxiety was most strongly associated with somatic depressive symptomatology. We also present clinically relevant evidence for a potential neuroprotective antidepressant effect on the brain-PAD metric that requires follow-up in future research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-021-01524-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295382PMC
July 2021

Contributing factors to advanced brain aging in depression and anxiety disorders.

Transl Psychiatry 2021 07 21;11(1):402. Epub 2021 Jul 21.

Department of Psychiatry, Amsterdam University Medical Centers, Vrije Universiteit and GGZ inGeest, Amsterdam Neuroscience, Amsterdam, The Netherlands.

Depression and anxiety are common and often comorbid mental health disorders that represent risk factors for aging-related conditions. Brain aging has shown to be more advanced in patients with major depressive disorder (MDD). Here, we extend prior work by investigating multivariate brain aging in patients with MDD, anxiety disorders, or both, and examine which factors contribute to older-appearing brains. Adults aged 18-57 years from the Netherlands Study of Depression and Anxiety underwent structural MRI. A pretrained brain-age prediction model based on >2000 samples from the ENIGMA consortium was applied to obtain brain-predicted age differences (brain PAD, predicted brain age minus chronological age) in 65 controls and 220 patients with current MDD and/or anxiety. Brain-PAD estimates were associated with clinical, somatic, lifestyle, and biological factors. After correcting for antidepressant use, brain PAD was significantly higher in MDD (+2.78 years, Cohen's d = 0.25, 95% CI -0.10-0.60) and anxiety patients (+2.91 years, Cohen's d = 0.27, 95% CI -0.08-0.61), compared with controls. There were no significant associations with lifestyle or biological stress systems. A multivariable model indicated unique contributions of higher severity of somatic depression symptoms (b = 4.21 years per unit increase on average sum score) and antidepressant use (-2.53 years) to brain PAD. Advanced brain aging in patients with MDD and anxiety was most strongly associated with somatic depressive symptomatology. We also present clinically relevant evidence for a potential neuroprotective antidepressant effect on the brain-PAD metric that requires follow-up in future research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-021-01524-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295382PMC
July 2021

A neurostructural biomarker of dissociative amnesia: a hippocampal study in dissociative identity disorder.

Psychol Med 2021 Jun 24:1-9. Epub 2021 Jun 24.

Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.

Background: Little is known about the neural correlates of dissociative amnesia, a transdiagnostic symptom mostly present in the dissociative disorders and core characteristic of dissociative identity disorder (DID). Given the vital role of the hippocampus in memory, a prime candidate for investigation is whether total and/or subfield hippocampal volume can serve as biological markers of dissociative amnesia.

Methods: A total of 75 women, 32 with DID and 43 matched healthy controls (HC), underwent structural magnetic resonance imaging (MRI). Using Freesurfer (version 6.0), volumes were extracted for bilateral global hippocampus, cornu ammonis (CA) 1-4, the granule cell molecular layer of the dentate gyrus (GC-ML-DG), fimbria, hippocampal-amygdaloid transition area (HATA), parasubiculum, presubiculum and subiculum. Analyses of covariance showed volumetric differences between DID and HC. Partial correlations exhibited relationships between the three factors of the dissociative experience scale scores (dissociative amnesia, absorption, depersonalisation/derealisation) and traumatisation measures with hippocampal global and subfield volumes.

Results: Hippocampal volumes were found to be smaller in DID as compared with HC in bilateral global hippocampus and bilateral CA1, right CA4, right GC-ML-DG, and left presubiculum. Dissociative amnesia was the only dissociative symptom that correlated uniquely and significantly with reduced bilateral hippocampal CA1 subfield volumes. Regarding traumatisation, only emotional neglect correlated negatively with bilateral global hippocampus, bilateral CA1, CA4 and GC-ML-DG, and right CA3.

Conclusion: We propose decreased CA1 volume as a biomarker for dissociative amnesia. We also propose that traumatisation, specifically emotional neglect, is interlinked with dissociative amnesia in having a detrimental effect on hippocampal volume.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0033291721002154DOI Listing
June 2021

The Neuroanatomy of Transgender Identity: Mega-Analytic Findings From the ENIGMA Transgender Persons Working Group.

J Sex Med 2021 06 22;18(6):1122-1129. Epub 2021 May 22.

Institute for Translational Psychiatry, University of Muenster, Muenster, Germany.

Background: In contrast to cisgender persons, transgender persons identify with a different gender than the one assigned at birth. Although research on the underlying neurobiology of transgender persons has been accumulating over the years, neuroimaging studies in this relatively rare population are often based on very small samples resulting in discrepant findings.

Aim: To examine the neurobiology of transgender persons in a large sample.

Methods: Using a mega-analytic approach, structural MRI data of 803 non-hormonally treated transgender men (TM, n = 214, female assigned at birth with male gender identity), transgender women (TW, n = 172, male assigned at birth with female gender identity), cisgender men (CM, n = 221, male assigned at birth with male gender identity) and cisgender women (CW, n = 196, female assigned at birth with female gender identity) were analyzed.

Outcomes: Structural brain measures, including grey matter volume, cortical surface area, and cortical thickness.

Results: Transgender persons differed significantly from cisgender persons with respect to (sub)cortical brain volumes and surface area, but not cortical thickness. Contrasting the 4 groups (TM, TW, CM, and CW), we observed a variety of patterns that not only depended on the direction of gender identity (towards male or towards female) but also on the brain measure as well as the brain region examined.

Clinical Translation: The outcomes of this large-scale study may provide a normative framework that may become useful in clinical studies.

Strengths And Limitations: While this is the largest study of MRI data in transgender persons to date, the analyses conducted were governed (and restricted) by the type of data collected across all participating sites.

Conclusion: Rather than being merely shifted towards either end of the male-female spectrum, transgender persons seem to present with their own unique brain phenotype. Mueller SC, Guillamon A, Zubiaurre-Elorza L, et al. The Neuroanatomy of Transgender Identity: Mega-Analytic Findings From the ENIGMA Transgender Persons Working Group. J Sex Med 2021;18:1122-1129.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsxm.2021.03.079DOI Listing
June 2021

Gender-related neuroanatomical differences in alcohol dependence: findings from the ENIGMA Addiction Working Group.

Neuroimage Clin 2021 22;30:102636. Epub 2021 Mar 22.

Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural & Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia. Electronic address:

Gender-related differences in the susceptibility, progression and clinical outcomes of alcohol dependence are well-known. However, the neurobiological substrates underlying such differences remain unclear. Therefore, this study aimed to investigate gender differences in the neuroanatomy (i.e. regional brain volumes) of alcohol dependence. We examined the volume of a priori regions of interest (i.e., orbitofrontal cortex, hippocampus, amygdala, nucleus accumbens, caudate, putamen, pallidum, thalamus, corpus callosum, cerebellum) and global brain measures (i.e., total grey matter (GM), total white matter (WM) and cerebrospinal fluid). Volumes were compared between 660 people with alcohol dependence (228 women) and 326 controls (99 women) recruited from the ENIGMA Addiction Working Group, accounting for intracranial volume, age and education years. Compared to controls, individuals with alcohol dependence on average had (3-9%) smaller volumes of the hippocampus (bilateral), putamen (left), pallidum (left), thalamus (right), corpus callosum, total GM and WM, and cerebellar GM (bilateral), the latter more prominently in women (right). Alcohol-dependent men showed smaller amygdala volume than control men, but this effect was unclear among women. In people with alcohol dependence, more monthly standard drinks predicted smaller amygdala and larger cerebellum GM volumes. The neuroanatomical differences associated with alcohol dependence emerged as gross and widespread, while those associated with a specific gender may be confined to selected brain regions. These findings warrant future neuroscience research to account for gender differences in alcohol dependence to further understand the neurobiological effects of alcohol dependence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nicl.2021.102636DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065340PMC
July 2021

Sex differences in the neuroanatomy of alcohol dependence: hippocampus and amygdala subregions in a sample of 966 people from the ENIGMA Addiction Working Group.

Transl Psychiatry 2021 03 4;11(1):156. Epub 2021 Mar 4.

Neuroscience of Addiction & Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural & Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia.

Males and females with alcohol dependence have distinct mental health and cognitive problems. Animal models of addiction postulate that the underlying neurobiological mechanisms are partially distinct, but there is little evidence of sex differences in humans with alcohol dependence as most neuroimaging studies have been conducted in males. We examined hippocampal and amygdala subregions in a large sample of 966 people from the ENIGMA Addiction Working Group. This comprised 643 people with alcohol dependence (225 females), and a comparison group of 323 people without alcohol dependence (98 females). Males with alcohol dependence had smaller volumes of the total amygdala and its basolateral nucleus than male controls, that exacerbated with alcohol dose. Alcohol dependence was also associated with smaller volumes of the hippocampus and its CA1 and subiculum subfield volumes in both males and females. In summary, hippocampal and amygdalar subregions may be sensitive to both shared and distinct mechanisms in alcohol-dependent males and females.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-021-01204-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7933136PMC
March 2021

The clinical effectiveness of using a predictive algorithm to guide antidepressant treatment in primary care (PReDicT): an open-label, randomised controlled trial.

Neuropsychopharmacology 2021 06 26;46(7):1307-1314. Epub 2021 Feb 26.

P1vital Ltd, Howbery Park, Wallingford, UK.

Depressed patients often do not respond to the first antidepressant prescribed, resulting in sequential trials of different medications. Personalised medicine offers a means of reducing this delay; however, the clinical effectiveness of personalised approaches to antidepressant treatment has not previously been tested. We assessed the clinical effectiveness of using a predictive algorithm, based on behavioural tests of affective cognition and subjective symptoms, to guide antidepressant treatment. We conducted a multicentre, open-label, randomised controlled trial in 913 medication-free depressed patients. Patients were randomly assigned to have their antidepressant treatment guided by a predictive algorithm or treatment as usual (TaU). The primary outcome was the response of depression symptoms, defined as a 50% or greater reduction in baseline score of the QIDS-SR-16 scale, at week 8. Additional prespecified outcomes included symptoms of anxiety at week 8, and symptoms of depression and functional outcome at weeks 8, 24 and 48. The response rate of depressive symptoms at week 8 in the PReDicT (55.9%) and TaU (51.8%) arms did not differ significantly (odds ratio: 1.18 (95% CI: 0.89-1.56), P = 0.25). However, there was a significantly greater reduction of anxiety in week 8 and a greater improvement in functional outcome at week 24 in the PReDicT arm. Use of the PReDicT test did not increase the rate of response to antidepressant treatment estimated by depressive symptoms but did improve symptoms of anxiety at week 8 and functional outcome at week 24. Our findings indicate that personalisation of antidepressant treatment may improve outcomes in depressed patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41386-021-00981-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8134561PMC
June 2021

Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3-90 years.

Hum Brain Mapp 2021 Feb 17. Epub 2021 Feb 17.

Laboratory of Psychiatric Neuroimaging, Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.

Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hbm.25364DOI Listing
February 2021

Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3-90 years.

Hum Brain Mapp 2021 Feb 11. Epub 2021 Feb 11.

Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA.

Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hbm.25320DOI Listing
February 2021

Associations between depression, lifestyle and brain structure: A longitudinal MRI study.

Neuroimage 2021 05 4;231:117834. Epub 2021 Feb 4.

Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Vrije Universiteit Amsterdam, The Netherlands. Electronic address:

Background: Depression has been associated with decreased regional grey matter volume, which might partly be explained by an unhealthier lifestyle in depressed individuals which has been ignored by most earlier studies. Also, the longitudinal nature of depression, lifestyle and brain structure associations is largely unknown. This study investigates the relationship of depression and lifestyle with brain structure cross-sectionally and longitudinally over up to 9 years.

Methods: We used longitudinal structural MRI data of persons with depression and/or anxiety disorders and controls (N = 347, N = 609). Cortical thickness of medial orbitofrontal cortex (mOFC), rostral anterior cingulate cortex (rACC) and hippocampal volume were derived using FreeSurfer. Using Generalized Estimating Equations, we investigated associations of depression and lifestyle (Body mass index (BMI), smoking, alcohol consumption, physical activity and sleep duration) with brain structure and change in brain structure over 2 (n = 179) and 9 years (n = 82).

Results: Depression status (B = -.053, p = .002) and severity (B = -.002, p = .002) were negatively associated with rACC thickness. mOFC thickness was negatively associated with BMI (B = -.004, p < .001) and positively with moderate alcohol consumption (B = .030, p = .009). All associations were independent of each other. No associations were observed between (change in) depression, disease burden or lifestyle factors with brain change over time.

Conclusions: Depressive symptoms and diagnosis were independently associated with thinner rACC, BMI with thinner mOFC, and moderate alcohol consumption with thicker mOFC. No longitudinal associations were observed, suggesting that regional grey matter alterations are a long-term consequence or vulnerability indicator for depression but not dynamically or progressively related to depression course trajectory.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2021.117834DOI Listing
May 2021

Mapping cortical and subcortical asymmetries in substance dependence: Findings from the ENIGMA Addiction Working Group.

Addict Biol 2021 09 28;26(5):e13010. Epub 2021 Jan 28.

BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia.

Brain asymmetry reflects left-right hemispheric differentiation, which is a quantitative brain phenotype that develops with age and can vary with psychiatric diagnoses. Previous studies have shown that substance dependence is associated with altered brain structure and function. However, it is unknown whether structural brain asymmetries are different in individuals with substance dependence compared with nondependent participants. Here, a mega-analysis was performed using a collection of 22 structural brain MRI datasets from the ENIGMA Addiction Working Group. Structural asymmetries of cortical and subcortical regions were compared between individuals who were dependent on alcohol, nicotine, cocaine, methamphetamine, or cannabis (n = 1,796) and nondependent participants (n = 996). Substance-general and substance-specific effects on structural asymmetry were examined using separate models. We found that substance dependence was significantly associated with differences in volume asymmetry of the nucleus accumbens (NAcc; less rightward; Cohen's d = 0.15). This effect was driven by differences from controls in individuals with alcohol dependence (less rightward; Cohen's d = 0.10) and nicotine dependence (less rightward; Cohen's d = 0.11). These findings suggest that disrupted structural asymmetry in the NAcc may be a characteristic of substance dependence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/adb.13010DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317852PMC
September 2021

Structural brain imaging studies offer clues about the effects of the shared genetic etiology among neuropsychiatric disorders.

Mol Psychiatry 2021 Jun 17;26(6):2101-2110. Epub 2021 Jan 17.

Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA.

Genomewide association studies have found significant genetic correlations among many neuropsychiatric disorders. In contrast, we know much less about the degree to which structural brain alterations are similar among disorders and, if so, the degree to which such similarities have a genetic etiology. From the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium, we acquired standardized mean differences (SMDs) in regional brain volume and cortical thickness between cases and controls. We had data on 41 brain regions for: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), epilepsy, major depressive disorder (MDD), obsessive compulsive disorder (OCD), and schizophrenia (SCZ). These data had been derived from 24,360 patients and 37,425 controls. The SMDs were significantly correlated between SCZ and BD, OCD, MDD, and ASD. MDD was positively correlated with BD and OCD. BD was positively correlated with OCD and negatively correlated with ADHD. These pairwise correlations among disorders were correlated with the corresponding pairwise correlations among disorders derived from genomewide association studies (r = 0.494). Our results show substantial similarities in sMRI phenotypes among neuropsychiatric disorders and suggest that these similarities are accounted for, in part, by corresponding similarities in common genetic variant architectures.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-020-01002-zDOI Listing
June 2021

Transient Cognitive Impairment and White Matter Hyperintensities in Severely Depressed Older Patients Treated With Electroconvulsive Therapy.

Am J Geriatr Psychiatry 2021 Jan 8. Epub 2021 Jan 8.

GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands; Amsterdam UMC, Vrije Universiteit, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Vrije Universiteit, Psychiatry, Amsterdam Public Health (Research Institute), Amsterdam, The Netherlands.

Background: Although electroconvulsive therapy (ECT) is a safe and effective treatment for patients with severe late life depression (LLD), transient cognitive impairment can be a reason to discontinue the treatment. The aim of the current study was to evaluate the association between structural brain characteristics and general cognitive function during and after ECT.

Methods: A total of 80 patients with LLD from the prospective naturalistic follow-up Mood Disorders in Elderly treated with Electroconvulsive Therapy study were examined. Magnetic resonance imaging scans were acquired before ECT. Overall brain morphology (white and grey matter) was evaluated using visual rating scales. Cognitive functioning before, during, and after ECT was measured using the Mini Mental State Examination (MMSE). A linear mixed-model analysis was performed to analyze the association between structural brain alterations and cognitive functioning over time.

Results: Patients with moderate to severe white matter hyperintensities (WMH) showed significantly lower MMSE scores than patients without severe WMH (F(1,75.54) = 5.42, p = 0.02) before, during, and post-ECT, however their trajectory of cognitive functioning was similar as no time × WMH interaction effect was observed (F(4,65.85) = 1.9, p = 0.25). Transient cognitive impairment was not associated with medial temporal or global cortical atrophy (MTA, GCA).

Conclusion: All patients showed a significant drop in cognitive functioning during ECT, which however recovered above baseline levels post-ECT and remained stable until at least 6 months post-ECT, independently of severity of WMH, GCA, or MTA. Therefore, clinicians should not be reluctant to start or continue ECT in patients with severe structural brain alterations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jagp.2020.12.028DOI Listing
January 2021

Brain structural correlates of insomnia severity in 1053 individuals with major depressive disorder: results from the ENIGMA MDD Working Group.

Transl Psychiatry 2020 12 8;10(1):425. Epub 2020 Dec 8.

Department of Psychiatry, University of Münster, Münster, Germany.

It has been difficult to find robust brain structural correlates of the overall severity of major depressive disorder (MDD). We hypothesized that specific symptoms may better reveal correlates and investigated this for the severity of insomnia, both a key symptom and a modifiable major risk factor of MDD. Cortical thickness, surface area and subcortical volumes were assessed from T1-weighted brain magnetic resonance imaging (MRI) scans of 1053 MDD patients (age range 13-79 years) from 15 cohorts within the ENIGMA MDD Working Group. Insomnia severity was measured by summing the insomnia items of the Hamilton Depression Rating Scale (HDRS). Symptom specificity was evaluated with correlates of overall depression severity. Disease specificity was evaluated in two independent samples comprising 2108 healthy controls, and in 260 clinical controls with bipolar disorder. Results showed that MDD patients with more severe insomnia had a smaller cortical surface area, mostly driven by the right insula, left inferior frontal gyrus pars triangularis, left frontal pole, right superior parietal cortex, right medial orbitofrontal cortex, and right supramarginal gyrus. Associations were specific for insomnia severity, and were not found for overall depression severity. Associations were also specific to MDD; healthy controls and clinical controls showed differential insomnia severity association profiles. The findings indicate that MDD patients with more severe insomnia show smaller surfaces in several frontoparietal cortical areas. While explained variance remains small, symptom-specific associations could bring us closer to clues on underlying biological phenomena of MDD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-020-01109-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723989PMC
December 2020

Cortical volume abnormalities in posttraumatic stress disorder: an ENIGMA-psychiatric genomics consortium PTSD workgroup mega-analysis.

Mol Psychiatry 2020 Dec 7. Epub 2020 Dec 7.

Department of Psychiatry and Behavioral Health, Penn State College of Medicine, Hershey, PA, USA.

Studies of posttraumatic stress disorder (PTSD) report volume abnormalities in multiple regions of the cerebral cortex. However, findings for many regions, particularly regions outside commonly studied emotion-related prefrontal, insular, and limbic regions, are inconsistent and tentative. Also, few studies address the possibility that PTSD abnormalities may be confounded by comorbid depression. A mega-analysis investigating all cortical regions in a large sample of PTSD and control subjects can potentially provide new insight into these issues. Given this perspective, our group aggregated regional volumes data of 68 cortical regions across both hemispheres from 1379 PTSD patients to 2192 controls without PTSD after data were processed by 32 international laboratories using ENIGMA standardized procedures. We examined whether regional cortical volumes were different in PTSD vs. controls, were associated with posttraumatic stress symptom (PTSS) severity, or were affected by comorbid depression. Volumes of left and right lateral orbitofrontal gyri (LOFG), left superior temporal gyrus, and right insular, lingual and superior parietal gyri were significantly smaller, on average, in PTSD patients than controls (standardized coefficients = -0.111 to -0.068, FDR corrected P values < 0.039) and were significantly negatively correlated with PTSS severity. After adjusting for depression symptoms, the PTSD findings in left and right LOFG remained significant. These findings indicate that cortical volumes in PTSD patients are smaller in prefrontal regulatory regions, as well as in broader emotion and sensory processing cortical regions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-020-00967-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8180531PMC
December 2020

Cerebral effects of glucagon-like peptide-1 receptor blockade before and after Roux-en-Y gastric bypass surgery in obese women: A proof-of-concept resting-state functional MRI study.

Diabetes Obes Metab 2021 02 5;23(2):415-424. Epub 2020 Nov 5.

Amsterdam Diabetes Center/Department of Internal Medicine, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands.

Aim: To assess the effects of Roux-en-Y gastric bypass surgery (RYGB)-related changes in glucagon-like peptide-1 (GLP-1) on cerebral resting-state functioning in obese women.

Materials And Methods: In nine obese females aged 40-54 years in the fasted state, we studied the effects of RYGB and GLP-1 on five a priori selected networks implicated in food- and reward-related processes as well as environment monitoring (default mode, right frontoparietal, basal ganglia, insula/anterior cingulate and anterior cingulate/orbitofrontal networks).

Results: Before surgery, GLP-1 receptor blockade (using exendin9-39) was associated with increased right caudate nucleus (basal ganglia network) and decreased right middle frontal (right frontoparietal network) connectivity compared with placebo. RYGB resulted in decreased right orbitofrontal (insula/anterior cingulate network) connectivity. In the default mode network, after surgery, GLP-1 receptor blockade had a larger effect on connectivity in this region than GLP-1 receptor blockade before RYGB (all P  < .05). Results remained similar after correction for changes in body weight. Default mode and right frontoparietal network connectivity changes were related to changes in body mass index and food scores after RYGB.

Conclusions: These findings suggest GLP-1 involvement in resting-state networks related to food and reward processes and monitoring of the internal and external environment, pointing to a potential role for GLP-1-induced changes in resting-state connectivity in RYGB-mediated weight loss and appetite control.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/dom.14233DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7821255PMC
February 2021

In vivo hippocampal subfield volumes in bipolar disorder-A mega-analysis from The Enhancing Neuro Imaging Genetics through Meta-Analysis Bipolar Disorder Working Group.

Hum Brain Mapp 2020 Oct 19. Epub 2020 Oct 19.

Department of Psychiatry, University of Münster, Münster, Germany.

The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta-Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1-weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed-effects models and mega-analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen's d = -0.20), cornu ammonis (CA)1 (d = -0.18), CA2/3 (d = -0.11), CA4 (d = -0.19), molecular layer (d = -0.21), granule cell layer of dentate gyrus (d = -0.21), hippocampal tail (d = -0.10), subiculum (d = -0.15), presubiculum (d = -0.18), and hippocampal amygdala transition area (d = -0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non-users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hbm.25249DOI Listing
October 2020

Greater male than female variability in regional brain structure across the lifespan.

Hum Brain Mapp 2020 Oct 12. Epub 2020 Oct 12.

FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.

For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hbm.25204DOI Listing
October 2020

Dissociative identity disorder: out of the shadows at last?

Br J Psychiatry 2020 Oct 7:1-2. Epub 2020 Oct 7.

Department of Psychiatry, Amsterdam University Medical Centers, Vrije Universiteit (VU) Medical Center, VU Amsterdam, The Netherlands.

Dissociative identity disorder (DID) is a severely debilitating disorder. Despite recognition in the current and past versions of the DSM, DID remains a controversial psychiatric disorder, which hampers its diagnosis and treatment. Neurobiological evidence regarding the aetiology of DID supports clinical observations that it is a severe form of post-traumatic stress disorder.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1192/bjp.2020.168DOI Listing
October 2020

Early posttraumatic autonomic and endocrine markers to predict posttraumatic stress symptoms after a preventive intervention with oxytocin.

Eur J Psychotraumatol 2020 Jun 8;11(1):1761622. Epub 2020 Jun 8.

Amsterdam University Medical Centers, Location Academic Medical Center, Department of Psychiatry, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands.

Background: Efficient prevention of posttraumatic stress disorder (PTSD) needs to target individuals with an increased risk for adverse outcome after trauma. Prognostic or prescriptive biological markers assessed early posttrauma may inform personalized treatment recommendations.

Objective: To test prognostic and prescriptive effects of early (posttraumatic) autonomic and endocrine markers on PTSD symptom development.

Method: Autonomic and endocrine markers were assessed within 12 days posttrauma and before treatment initiation within a randomized placebo-controlled trial investigating repeated oxytocin administration as preventive intervention for PTSD. Linear mixed effects models were used to test the effects of heart rate (variability), resting cortisol, morning cortisol and cortisol awakening response (CAR), cortisol suppression by dexamethasone and resting oxytocin on PTSD symptoms 1.5, 3 and 6 months posttrauma in men ( = 54), women using hormonal contraception ( = 27) and cycling women ( = 19).

Results: We found significant prognostic effects of resting oxytocin and cortisol suppression. In women using hormonal contraception, higher oxytocin was associated with higher PTSD symptoms across follow-up. Stronger cortisol suppression by dexamethasone, reflecting increased glucocorticoid receptor feedback sensitivity, was associated with lower PTSD symptoms across follow-up in men, but with higher symptoms at 1.5 months in women using hormonal contraception. These effects were independent of treatment condition. No further significant prognostic or prescriptive effects were detected.

Conclusion: Our exploratory study indicates that resting oxytocin and glucocorticoid receptor feedback sensitivity early posttrauma are associated with subsequent PTSD symptom severity. Notably, prognostic effects depended on sex and hormonal contraception use, emphasizing the necessity to consider these factors in biomedical PTSD research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/20008198.2020.1761622DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7448939PMC
June 2020

Virtual Histology of Cortical Thickness and Shared Neurobiology in 6 Psychiatric Disorders.

JAMA Psychiatry 2021 Jan;78(1):47-63

Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, the Netherlands.

Importance: Large-scale neuroimaging studies have revealed group differences in cortical thickness across many psychiatric disorders. The underlying neurobiology behind these differences is not well understood.

Objective: To determine neurobiologic correlates of group differences in cortical thickness between cases and controls in 6 disorders: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and schizophrenia.

Design, Setting, And Participants: Profiles of group differences in cortical thickness between cases and controls were generated using T1-weighted magnetic resonance images. Similarity between interregional profiles of cell-specific gene expression and those in the group differences in cortical thickness were investigated in each disorder. Next, principal component analysis was used to reveal a shared profile of group difference in thickness across the disorders. Analysis for gene coexpression, clustering, and enrichment for genes associated with these disorders were conducted. Data analysis was conducted between June and December 2019. The analysis included 145 cohorts across 6 psychiatric disorders drawn from the ENIGMA consortium. The numbers of cases and controls in each of the 6 disorders were as follows: ADHD: 1814 and 1602; ASD: 1748 and 1770; BD: 1547 and 3405; MDD: 2658 and 3572; OCD: 2266 and 2007; and schizophrenia: 2688 and 3244.

Main Outcomes And Measures: Interregional profiles of group difference in cortical thickness between cases and controls.

Results: A total of 12 721 cases and 15 600 controls, ranging from ages 2 to 89 years, were included in this study. Interregional profiles of group differences in cortical thickness for each of the 6 psychiatric disorders were associated with profiles of gene expression specific to pyramidal (CA1) cells, astrocytes (except for BD), and microglia (except for OCD); collectively, gene-expression profiles of the 3 cell types explain between 25% and 54% of variance in interregional profiles of group differences in cortical thickness. Principal component analysis revealed a shared profile of difference in cortical thickness across the 6 disorders (48% variance explained); interregional profile of this principal component 1 was associated with that of the pyramidal-cell gene expression (explaining 56% of interregional variation). Coexpression analyses of these genes revealed 2 clusters: (1) a prenatal cluster enriched with genes involved in neurodevelopmental (axon guidance) processes and (2) a postnatal cluster enriched with genes involved in synaptic activity and plasticity-related processes. These clusters were enriched with genes associated with all 6 psychiatric disorders.

Conclusions And Relevance: In this study, shared neurobiologic processes were associated with differences in cortical thickness across multiple psychiatric disorders. These processes implicate a common role of prenatal development and postnatal functioning of the cerebral cortex in these disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamapsychiatry.2020.2694DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450410PMC
January 2021

What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group.

Hum Brain Mapp 2020 Jul 29. Epub 2020 Jul 29.

Division of Mental Health and Addicition, Oslo University Hospital, Oslo, Norway.

MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hbm.25098DOI Listing
July 2020

The associations between childhood trauma and work functioning in adult workers with and without depressive and anxiety disorders.

Eur Psychiatry 2020 07 16;63(1):e76. Epub 2020 Jul 16.

Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.

Background: To examine the association between childhood trauma and work functioning, and to elucidate to what extent this association can be accounted for by depression and/or anxiety.

Methods: Data of 1,649 working participants were derived from the Netherlands Study of Depression and Anxiety (NESDA, n = 2,981). Childhood trauma (emotional neglect, psychological, physical, and sexual abuse before age 16) was assessed with a structured interview and work functioning, in terms of absenteeism and presenteeism, with the Health and Labor Questionnaire Short Form (SF-HLQ) and the World Health Organization Disability Assessment Schedule II (WHODAS-II), respectively. Depressive and/or anxiety disorders were assessed with the Composite Interview Diagnostic Instrument (CIDI). Mediation analyses were conducted.

Results: At baseline, 44.8% reported to have experienced childhood trauma. Workers with the highest childhood trauma level showed significantly (p < 0.001) more absenteeism as well as more presenteeism. Mediation analyses revealed that indirect effects between the childhood trauma index and both work indices were significantly mediated by current depressive disorder (p = 0.023 and p < 0.001, respectively) and current comorbid depression-anxiety (p = 0.020 and p < 0.001, respectively), with the latter accounting for the largest effects (PM = 0.23 and PM = 0.29, respectively). No significant mediating role in this relationship was found for current anxiety disorder and remitted depressive and/or anxiety disorder.

Conclusions: Persons with childhood trauma have significantly reduced work functioning in terms of absenteeism and presenteeism. This seems to be largely accounted for by current depressive disorders and current comorbid depression-anxiety.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1192/j.eurpsy.2020.70DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7443788PMC
July 2020

How do substance use disorders compare to other psychiatric conditions on structural brain abnormalities? A cross-disorder meta-analytic comparison using the ENIGMA consortium findings.

Hum Brain Mapp 2020 Jul 9. Epub 2020 Jul 9.

Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, CHU Ste-Justine, Montreal, Canada.

Alcohol use disorder (AUD) and cannabis use disorder (CUD) are associated with brain alterations particularly involving fronto-cerebellar and meso-cortico-limbic circuitry. However, such abnormalities have additionally been reported in other psychiatric conditions, and until recently there has been few large-scale investigations to compare such findings. The current study uses the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium method of standardising structural brain measures to quantify case-control differences and to compare brain-correlates of substance use disorders with those published in relation to other psychiatric disorders. Using the ENIGMA protocols, we report effect sizes derived from a meta-analysis of alcohol (seven studies, N = 798, 54% are cases) and cannabis (seven studies, N = 447, 45% are cases) dependent cases and age- and sex-matched controls. We conduct linear analyses using harmonised methods to process and parcellate brain data identical to those reported in the literature for ENIGMA case-control studies of major depression disorder (MDD), schizophrenia (SCZ) and bipolar disorder so that effect sizes are optimally comparable across disorders. R elationships between substance use disorder diagnosis and subcortical grey matter volumes and cortical thickness were assessed with intracranial volume, age and sex as co-variates . After correcting for multiple comparisons, AUD case-control meta-analysis of subcortical regions indicated significant differences in the thalamus, hippocampus, amygdala and accumbens, with effect sizes (0.23) generally equivalent to, or larger than |0.23| those previously reported for other psychiatric disorders (except for the pallidum and putamen). On measures of cortical thickness, AUD was associated with significant differences bilaterally in the fusiform gyrus, inferior temporal gyrus, temporal pole, superior frontal gyrus, and rostral and caudal anterior cingulate gyri. Meta-analysis of CUD case-control studies indicated reliable reductions in amygdala, accumbens and hippocampus volumes, with the former effect size comparable to, and the latter effect size around half of that reported for alcohol and SCZ. CUD was associated with lower cortical thickness in the frontal regions, particularly the medial orbitofrontal region, but this effect was not significant after correcting for multiple testing. This study allowed for an unbiased cross-disorder comparison of brain correlates of substance use disorders and showed alcohol-related brain anomalies equivalent in effect size to that found in SCZ in several subcortical and cortical regions and significantly greater alterations than those found in MDD in several subcortical and cortical regions. Although modest, CUD results overlapped with findings reported for AUD and other psychiatric conditions, but appear to be most robustly related to reduce thickness of the medial orbitofrontal cortex.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hbm.25114DOI Listing
July 2020

ENIGMA-anxiety working group: Rationale for and organization of large-scale neuroimaging studies of anxiety disorders.

Hum Brain Mapp 2020 Jul 3. Epub 2020 Jul 3.

Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa.

Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hbm.25100DOI Listing
July 2020

Mega-analysis methods in ENIGMA: The experience of the generalized anxiety disorder working group.

Hum Brain Mapp 2020 Jun 29. Epub 2020 Jun 29.

Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.

The ENIGMA group on Generalized Anxiety Disorder (ENIGMA-Anxiety/GAD) is part of a broader effort to investigate anxiety disorders using imaging and genetic data across multiple sites worldwide. The group is actively conducting a mega-analysis of a large number of brain structural scans. In this process, the group was confronted with many methodological challenges related to study planning and implementation, between-country transfer of subject-level data, quality control of a considerable amount of imaging data, and choices related to statistical methods and efficient use of resources. This report summarizes the background information and rationale for the various methodological decisions, as well as the approach taken to implement them. The goal is to document the approach and help guide other research groups working with large brain imaging data sets as they develop their own analytic pipelines for mega-analyses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hbm.25096DOI Listing
June 2020

ENIGMA MDD: seven years of global neuroimaging studies of major depression through worldwide data sharing.

Transl Psychiatry 2020 05 29;10(1):172. Epub 2020 May 29.

Illinois Institute of Technology, Chicago, IL, USA.

A key objective in the field of translational psychiatry over the past few decades has been to identify the brain correlates of major depressive disorder (MDD). Identifying measurable indicators of brain processes associated with MDD could facilitate the detection of individuals at risk, and the development of novel treatments, the monitoring of treatment effects, and predicting who might benefit most from treatments that target specific brain mechanisms. However, despite intensive neuroimaging research towards this effort, underpowered studies and a lack of reproducible findings have hindered progress. Here, we discuss the work of the ENIGMA Major Depressive Disorder (MDD) Consortium, which was established to address issues of poor replication, unreliable results, and overestimation of effect sizes in previous studies. The ENIGMA MDD Consortium currently includes data from 45 MDD study cohorts from 14 countries across six continents. The primary aim of ENIGMA MDD is to identify structural and functional brain alterations associated with MDD that can be reliably detected and replicated across cohorts worldwide. A secondary goal is to investigate how demographic, genetic, clinical, psychological, and environmental factors affect these associations. In this review, we summarize findings of the ENIGMA MDD disease working group to date and discuss future directions. We also highlight the challenges and benefits of large-scale data sharing for mental health research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-020-0842-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7260219PMC
May 2020

Brain structural abnormalities in obesity: relation to age, genetic risk, and common psychiatric disorders : Evidence through univariate and multivariate mega-analysis including 6420 participants from the ENIGMA MDD working group.

Mol Psychiatry 2020 May 28. Epub 2020 May 28.

Department of Psychiatry, University of Texas Health Science Center at Houston, Houston, TX, USA.

Emerging evidence suggests that obesity impacts brain physiology at multiple levels. Here we aimed to clarify the relationship between obesity and brain structure using structural MRI (n = 6420) and genetic data (n = 3907) from the ENIGMA Major Depressive Disorder (MDD) working group. Obesity (BMI > 30) was significantly associated with cortical and subcortical abnormalities in both mass-univariate and multivariate pattern recognition analyses independent of MDD diagnosis. The most pronounced effects were found for associations between obesity and lower temporo-frontal cortical thickness (maximum Cohen´s d (left fusiform gyrus) = -0.33). The observed regional distribution and effect size of cortical thickness reductions in obesity revealed considerable similarities with corresponding patterns of lower cortical thickness in previously published studies of neuropsychiatric disorders. A higher polygenic risk score for obesity significantly correlated with lower occipital surface area. In addition, a significant age-by-obesity interaction on cortical thickness emerged driven by lower thickness in older participants. Our findings suggest a neurobiological interaction between obesity and brain structure under physiological and pathological brain conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-020-0774-9DOI Listing
May 2020

Brain aging in major depressive disorder: results from the ENIGMA major depressive disorder working group.

Mol Psychiatry 2020 May 18. Epub 2020 May 18.

Department of Psychiatry, University of Münster, Münster, Germany.

Major depressive disorder (MDD) is associated with an increased risk of brain atrophy, aging-related diseases, and mortality. We examined potential advanced brain aging in adult MDD patients, and whether this process is associated with clinical characteristics in a large multicenter international dataset. We performed a mega-analysis by pooling brain measures derived from T1-weighted MRI scans from 19 samples worldwide. Healthy brain aging was estimated by predicting chronological age (18-75 years) from 7 subcortical volumes, 34 cortical thickness and 34 surface area, lateral ventricles and total intracranial volume measures separately in 952 male and 1236 female controls from the ENIGMA MDD working group. The learned model coefficients were applied to 927 male controls and 986 depressed males, and 1199 female controls and 1689 depressed females to obtain independent unbiased brain-based age predictions. The difference between predicted "brain age" and chronological age was calculated to indicate brain-predicted age difference (brain-PAD). On average, MDD patients showed a higher brain-PAD of +1.08 (SE 0.22) years (Cohen's d = 0.14, 95% CI: 0.08-0.20) compared with controls. However, this difference did not seem to be driven by specific clinical characteristics (recurrent status, remission status, antidepressant medication use, age of onset, or symptom severity). This highly powered collaborative effort showed subtle patterns of age-related structural brain abnormalities in MDD. Substantial within-group variance and overlap between groups were observed. Longitudinal studies of MDD and somatic health outcomes are needed to further assess the clinical value of these brain-PAD estimates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-020-0754-0DOI Listing
May 2020
-->