Publications by authors named "Diane Whited"

14 Publications

  • Page 1 of 1

Risks of mining to salmonid-bearing watersheds.

Sci Adv 2022 Jul 1;8(26):eabn0929. Epub 2022 Jul 1.

Northern Confluence Initiative, Smithers, BC V0J 2N0, Canada.

Mining provides resources for people but can pose risks to ecosystems that support cultural keystone species. Our synthesis reviews relevant aspects of mining operations, describes the ecology of salmonid-bearing watersheds in northwestern North America, and compiles the impacts of metal and coal extraction on salmonids and their habitat. We conservatively estimate that this region encompasses nearly 4000 past producing mines, with present-day operations ranging from small placer sites to massive open-pit projects that annually mine more than 118 million metric tons of earth. Despite impact assessments that are intended to evaluate risk and inform mitigation, mines continue to harm salmonid-bearing watersheds via pathways such as toxic contaminants, stream channel burial, and flow regime alteration. To better maintain watershed processes that benefit salmonids, we highlight key windows during the mining governance life cycle for science to guide policy by more accurately accounting for stressor complexity, cumulative effects, and future environmental change.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.abn0929DOI Listing
July 2022

Landscape Connectivity and Genetic Structure in a Mainstem and a Tributary Stonefly (Plecoptera) Species Using a Novel Reference Genome.

J Hered 2022 Jul;113(4):453-471

Flathead Lake Biological Station, University of Montana, 32125 Bio Station Lane, Polson, MT, USA.

Understanding how environmental variation influences population genetic structure can help predict how environmental change influences population connectivity, genetic diversity, and evolutionary potential. We used riverscape genomics modeling to investigate how climatic and habitat variables relate to patterns of genetic variation in 2 stonefly species, one from mainstem river habitats (Sweltsa coloradensis) and one from tributaries (Sweltsa fidelis) in 40 sites in northwest Montana, USA. We produced a draft genome assembly for S. coloradensis (N50 = 0.251 Mbp, BUSCO > 95% using "insecta_ob9" reference genes). We genotyped 1930 SNPs in 372 individuals for S. coloradensis and 520 SNPs in 153 individuals for S. fidelis. We found higher genetic diversity for S. coloradensis compared to S. fidelis, but nearly identical genetic differentiation among sites within each species (both had global loci median FST = 0.000), despite differences in stream network location. For landscape genomics and testing for selection, we produced a less stringently filtered data set (3454 and 1070 SNPs for S. coloradensis and S. fidelis, respectively). Environmental variables (mean summer precipitation, slope, aspect, mean June stream temperature, land cover type) were correlated with 19 putative adaptive loci for S. coloradensis, but there was only one putative adaptive locus for S. fidelis (correlated with aspect). Interestingly, we also detected potential hybridization between multiple Sweltsa species which has never been previously detected. Studies like ours, that test for adaptive variation in multiple related species are needed to help assess landscape connectivity and the vulnerability of populations and communities to environmental change.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jhered/esac025DOI Listing
July 2022

A framework to integrate innovations in invasion science for proactive management.

Biol Rev Camb Philos Soc 2022 08 22;97(4):1712-1735. Epub 2022 Apr 22.

Flathead Lake Biological Station, University of Montana, 32125 Bio Station Lane, Polson, MT, 59860, U.S.A.

Invasive alien species (IAS) are a rising threat to biodiversity, national security, and regional economies, with impacts in the hundreds of billions of U.S. dollars annually. Proactive or predictive approaches guided by scientific knowledge are essential to keeping pace with growing impacts of invasions under climate change. Although the rapid development of diverse technologies and approaches has produced tools with the potential to greatly accelerate invasion research and management, innovation has far outpaced implementation and coordination. Technological and methodological syntheses are urgently needed to close the growing implementation gap and facilitate interdisciplinary collaboration and synergy among evolving disciplines. A broad review is necessary to demonstrate the utility and relevance of work in diverse fields to generate actionable science for the ongoing invasion crisis. Here, we review such advances in relevant fields including remote sensing, epidemiology, big data analytics, environmental DNA (eDNA) sampling, genomics, and others, and present a generalized framework for distilling existing and emerging data into products for proactive IAS research and management. This integrated workflow provides a pathway for scientists and practitioners in diverse disciplines to contribute to applied invasion biology in a coordinated, synergistic, and scalable manner.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/brv.12859DOI Listing
August 2022

Climate change and expanding invasive species drive widespread declines of native trout in the northern Rocky Mountains, USA.

Sci Adv 2021 Dec 22;7(52):eabj5471. Epub 2021 Dec 22.

Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA.

Climate change and invasive species are major threats to native biodiversity, but few empirical studies have examined their combined effects at large spatial and temporal scales. Using 21,917 surveys collected over 30 years, we quantified the impacts of climate change on the past and future distributions of five interacting native and invasive trout species throughout the northern Rocky Mountains, USA. We found that the occupancy of native bull trout and cutthroat trout declined by 18 and 6%, respectively (1993–2018), and was predicted to decrease by an additional 39 and 16% by 2080. However, reasons for these occupancy reductions markedly differed among species: Climate-driven increases in water temperature and decreases in summer flow likely caused declines of bull trout, while climate-induced expansion of invasive species largely drove declines of cutthroat trout. Our results demonstrate that climate change can affect ecologically similar, co-occurring native species through distinct pathways, necessitating species-specific management actions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.abj5471DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694593PMC
December 2021

Glacier retreat creating new Pacific salmon habitat in western North America.

Nat Commun 2021 12 7;12(1):6816. Epub 2021 Dec 7.

School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA.

Glacier retreat poses risks and benefits for species of cultural and economic importance. One example is Pacific salmon (Oncorhynchus spp.), supporting subsistence harvests, and commercial and recreational fisheries worth billions of dollars annually. Although decreases in summer streamflow and warming freshwater is reducing salmon habitat quality in parts of their range, glacier retreat is creating new streams and lakes that salmon can colonize. However, potential gains in future salmon habitat associated with glacier loss have yet to be quantified across the range of Pacific salmon. Here we project future gains in Pacific salmon freshwater habitat by linking a model of glacier mass change for 315 glaciers, forced by five different Global Climate Models, with a simple model of salmon stream habitat potential throughout the Pacific Mountain ranges of western North America. We project that by the year 2100 glacier retreat will create 6,146 (±1,619) km of new streams accessible for colonization by Pacific salmon, of which 1,930 (±569) km have the potential to be used for spawning and juvenile rearing, representing 0 to 27% gains within the 18 sub-regions we studied. These findings can inform proactive management and conservation of Pacific salmon in this era of rapid climate change.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-26897-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8651712PMC
December 2021

Glacier Retreat and Pacific Salmon.

Bioscience 2020 Mar 11;70(3):220-236. Epub 2020 Mar 11.

Flathead Lake Biological Station, University of Montana, Polson, Montana.

Glaciers have shaped past and present habitats for Pacific salmon (Oncorhynchus spp.) in North America. During the last glacial maximum, approximately 45% of the current North American range of Pacific salmon was covered in ice. Currently, most salmon habitat occurs in watersheds in which glacier ice is present and retreating. This synthesis examines the multiple ways that glacier retreat can influence aquatic ecosystems through the lens of Pacific salmon life cycles. We predict that the coming decades will result in areas in which salmon populations will be challenged by diminished water flows and elevated water temperatures, areas in which salmon productivity will be enhanced as downstream habitat suitability increases, and areas in which new river and lake habitat will be formed that can be colonized by anadromous salmon. Effective conservation and management of salmon habitat and populations should consider the impacts of glacier retreat and other sources of ecosystem change.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/biosci/biaa015DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064434PMC
March 2020

Legacy introductions and climatic variation explain spatiotemporal patterns of invasive hybridization in a native trout.

Glob Chang Biol 2017 11 4;23(11):4663-4674. Epub 2017 Apr 4.

Division of Biological Sciences, University of Montana, Missoula, MT, USA.

Hybridization between invasive and native species, a significant threat to worldwide biodiversity, is predicted to increase due to climate-induced expansions of invasive species. Long-term research and monitoring are crucial for understanding the ecological and evolutionary processes that modulate the effects of invasive species. Using a large, multidecade genetics dataset (N = 582 sites, 12,878 individuals) with high-resolution climate predictions and extensive stocking records, we evaluate the spatiotemporal dynamics of hybridization between native cutthroat trout and invasive rainbow trout, the world's most widely introduced invasive fish, across the Northern Rocky Mountains of the United States. Historical effects of stocking and contemporary patterns of climatic variation were strongly related to the spread of hybridization across space and time. The probability of occurrence, extent of, and temporal changes in hybridization increased at sites in close proximity to historical stocking locations with greater rainbow trout propagule pressure, warmer water temperatures, and lower spring precipitation. Although locations with warmer water temperatures were more prone to hybridization, cold sites were not protected from invasion; 58% of hybridized sites had cold mean summer water temperatures (<11°C). Despite cessation of stocking over 40 years ago, hybridization increased over time at half (50%) of the locations with long-term data, the vast majority of which (74%) were initially nonhybridized, emphasizing the chronic, negative impacts of human-mediated hybridization. These results show that effects of climate change on biodiversity must be analyzed in the context of historical human impacts that set ecological and evolutionary trajectories.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.13681DOI Listing
November 2017

Accounting for adaptive capacity and uncertainty in assessments of species' climate-change vulnerability.

Conserv Biol 2017 02 27;31(1):136-149. Epub 2016 Aug 27.

Flathead Lake Biological Station, Division of Biological Sciences, University of Montana, Polson, MT, 59860, U.S.A.

Climate-change vulnerability assessments (CCVAs) are valuable tools for assessing species' vulnerability to climatic changes, yet failure to include measures of adaptive capacity and to account for sources of uncertainty may limit their effectiveness. We took a more comprehensive approach that incorporates exposure, sensitivity, and capacity to adapt to climate change. We applied our approach to anadromous steelhead trout (Oncorhynchus mykiss) and nonanadromous bull trout (Salvelinus confluentus), threatened salmonids within the Columbia River Basin (U.S.A.). We quantified exposure on the basis of scenarios of future stream temperature and flow, and we represented sensitivity and capacity to adapt to climate change with metrics of habitat quality, demographic condition, and genetic diversity. Both species were found to be highly vulnerable to climate change at low elevations and in their southernmost habitats. However, vulnerability rankings varied widely depending on the factors (climate, habitat, demographic, and genetic) included in the CCVA and often differed for the 2 species at locations where they were sympatric. Our findings illustrate that CCVA results are highly sensitive to data inputs and that spatial differences can complicate multispecies conservation. Based on our results, we suggest that CCVAs be considered within a broader conceptual and computational framework and be used to refine hypotheses, guide research, and compare plausible scenarios of species' vulnerability to climate change.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/cobi.12764DOI Listing
February 2017

Climate variables explain neutral and adaptive variation within salmonid metapopulations: the importance of replication in landscape genetics.

Mol Ecol 2016 02;25(3):689-705

Flathead Lake Biological Station, University of Montana, Polson, MT, 59860, USA.

Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population-specific and pairwise FST ) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, USA. Using 151 putatively neutral and 29 candidate adaptive SNP loci, we found that climate-related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables and FST across all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin-wide to the metapopulation scale). Sensitivity analysis (leave-one-population-out) revealed consistent relationships between climate variables and FST within three metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (N = 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.13517DOI Listing
February 2016

Genetic diversity is related to climatic variation and vulnerability in threatened bull trout.

Glob Chang Biol 2015 Jul 6;21(7):2510-2524. Epub 2015 Feb 6.

Flathead Biological Station, Fish and Wildlife Genomics Group, University of Montana, Polson, MT, 59860, USA.

Understanding how climatic variation influences ecological and evolutionary processes is crucial for informed conservation decision-making. Nevertheless, few studies have measured how climatic variation influences genetic diversity within populations or how genetic diversity is distributed across space relative to future climatic stress. Here, we tested whether patterns of genetic diversity (allelic richness) were related to climatic variation and habitat features in 130 bull trout (Salvelinus confluentus) populations from 24 watersheds (i.e., ~4-7th order river subbasins) across the Columbia River Basin, USA. We then determined whether bull trout genetic diversity was related to climate vulnerability at the watershed scale, which we quantified on the basis of exposure to future climatic conditions (projected scenarios for the 2040s) and existing habitat complexity. We found a strong gradient in genetic diversity in bull trout populations across the Columbia River Basin, where populations located in the most upstream headwater areas had the greatest genetic diversity. After accounting for spatial patterns with linear mixed models, allelic richness in bull trout populations was positively related to habitat patch size and complexity, and negatively related to maximum summer temperature and the frequency of winter flooding. These relationships strongly suggest that climatic variation influences evolutionary processes in this threatened species and that genetic diversity will likely decrease due to future climate change. Vulnerability at a watershed scale was negatively correlated with average genetic diversity (r = -0.77; P < 0.001); watersheds containing populations with lower average genetic diversity generally had the lowest habitat complexity, warmest stream temperatures, and greatest frequency of winter flooding. Together, these findings have important conservation implications for bull trout and other imperiled species. Genetic diversity is already depressed where climatic vulnerability is highest; it will likely erode further in the very places where diversity may be most needed for future persistence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.12850DOI Listing
July 2015

Performance of salmon fishery portfolios across western North America.

J Appl Ecol 2014 Dec 3;51(6):1554-1563. Epub 2014 Oct 3.

Alaska Department of Fish and Game 333 Raspberry Road, Anchorage, AK, 99518, USA.

Quantifying the variability in the delivery of ecosystem services across the landscape can be used to set appropriate management targets, evaluate resilience and target conservation efforts. Ecosystem functions and services may exhibit portfolio-type dynamics, whereby diversity within lower levels promotes stability at more aggregated levels. Portfolio theory provides a framework to characterize the relative performance among ecosystems and the processes that drive differences in performance. We assessed Pacific salmon spp. portfolio performance across their native latitudinal range focusing on the reliability of salmon returns as a metric with which to assess the function of salmon ecosystems and their services to humans. We used the Sharpe ratio (e.g. the size of the total salmon return to the portfolio relative to its variability (risk)) to evaluate the performance of Chinook and sockeye salmon portfolios across the west coast of North America. We evaluated the effects on portfolio performance from the variance of and covariance among salmon returns within each portfolio, and the association between portfolio performance and watershed attributes. We found a positive latitudinal trend in the risk-adjusted performance of Chinook and sockeye salmon portfolios that also correlated negatively with anthropogenic impact on watersheds (e.g. dams and land-use change). High-latitude Chinook salmon portfolios were on average 2·5 times more reliable, and their portfolio risk was mainly due to low variance in the individual assets. Sockeye salmon portfolios were also more reliable at higher latitudes, but sources of risk varied among the highest performing portfolios. . Portfolio theory provides a straightforward method for characterizing the resilience of salmon ecosystems and their services. Natural variability in portfolio performance among undeveloped watersheds provides a benchmark for restoration efforts. Locally and regionally, assessing the sources of portfolio risk can guide actions to maintain existing resilience (protect habitat and disturbance regimes that maintain response diversity; employ harvest strategies sensitive to different portfolio components) or improve restoration activities. Improving our understanding of portfolio reliability may allow for management of natural resources that is robust to ongoing environmental change. Portfolio theory provides a straightforward method for characterizing the resilience of salmon ecosystems and their services. Natural variability in portfolio performance among undeveloped watersheds provides a benchmark for restoration efforts. Locally and regionally, assessing the sources of portfolio risk can guide actions to maintain existing resilience (protect habitat and disturbance regimes that maintain response diversity; employ harvest strategies sensitive to different portfolio components) or improve restoration activities. Improving our understanding of portfolio reliability may allow for management of natural resources that is robust to ongoing environmental change.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/1365-2664.12341DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4277685PMC
December 2014

Climate, hydrologic disturbance, and succession: drivers of floodplain pattern.

Ecology 2007 Apr;88(4):940-53

Flathead Lake Biological Station, Division of Biological Sciences, The University of Montana, 311 Bio Station Lane, Polson, Montana 59860-9659, USA.

Floodplains are among the world's most threatened ecosystems due to the pervasiveness of dams, levee systems, and other modifications to rivers. Few unaltered floodplains remain where we may examine their dynamics over decadal time scales. Our study provides a detailed examination of landscape change over a 60-year period (1945-2004) on the Nyack floodplain of the Middle Fork of the Flathead River, a free-flowing, gravel-bed river in northwest Montana, USA. We used historical aerial photographs and airborne and satellite imagery to delineate habitats (i.e., mature forest, regenerative forest, water, cobble) within the floodplain. We related changes in the distribution and size of these habitats to hydrologic disturbance and regional climate. Results show a relationship between changes in floodplain habitats and annual flood magnitude, as well as between hydrology and the cooling and warming phases of the Pacific Decadal Oscillation (PDO). Large magnitude floods and greater frequency of moderate floods were associated with the cooling phases of the PDO, resulting in a floodplain environment dominated by extensive restructuring and regeneration of floodplain habitats. Conversely, warming phases of the PDO corresponded with decreases in magnitude, duration, and frequency of critical flows, creating a floodplain environment dominated by late successional vegetation and low levels of physical restructuring. Over the 60-year time series, habitat change was widespread throughout the floodplain, though the relative abundances of the habitats did not change greatly. We conclude that the long- and short-term interactions of climate, floods, and plant succession produce a shifting habitat mosaic that is a fundamental attribute of natural floodplain ecosystems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1890/05-1149DOI Listing
April 2007
-->