Publications by authors named "Diane Nepomuceno"

39 Publications

Discovery and SAR studies of 2-alkyl-3-phenyl-2,4,5,6,7,8-hexahydropyrazolo[3,4-d]azepines as 5-HT inhibitors leading to the identification of a clinical candidate.

Bioorg Med Chem Lett 2021 01 7;31:127669. Epub 2020 Nov 7.

Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, CA 92121, United States.

We report here the synthesis and characterization of a dual 5-HT / 5-HT receptor antagonist 3-(4-Fluoro-phenyl)-2-isopropyl-2,4,5,6,7,8-hexahydro-1,2,6-triaza-azulene (4j). 4j is a high affinity 5-HT and 5-HT receptor ligand having a pK = 8.1 at both receptors. It behaves as an antagonist in an in vitro functional assay for 5-HT and as an inverse agonist in an in vitro functional assay for 5-HT. In a validated in vivo model for central 5-HT activity in rats, blockade of 5-carboxamidotryptamine (5-CT) induced hypothermia, 4j shows efficacy at low doses (ED = 0.05 mg/kg, p.o., 1 h) and maximal efficacy was observed at 0.3 mg/kg p.o. with a corresponding plasma concentration of ~27 ng/ml. In a validated in vivo model for central 5-HT activity, blockade of 2,5-dimethoxy-4-iodoamphetamine (DOI) induced head-twitches in mice, 4j shows efficacy at low doses with an ED = 0.3 mg/kg p.o. Ex vivo receptor binding studies demonstrate that 4j occupied 5-HT receptor binding sites in the frontal cortex of the rat brain with an ED in good agreement with the ED value for central functional effect mediated by 5-HT receptor (ED = 0.8 mg/kg, p.o., 1 h).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2020.127669DOI Listing
January 2021

Substituted Azabicyclo[2.2.1]heptanes as Selective Orexin-1 Antagonists: Discovery of JNJ-54717793.

ACS Med Chem Lett 2020 Oct 27;11(10):2002-2009. Epub 2020 Apr 27.

Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States.

The orexin system consists of two neuropeptides (orexin-A and orexin-B) that exert their mode of action on two receptors (orexin-1 and orexin-2). While the role of the orexin-2 receptor is established as an important modulator of sleep wake states, the role of the orexin-1 receptor is believed to play a role in addiction, panic, or anxiety. In this manuscript, we describe the optimization of a nonselective substituted azabicyclo[2.2.1]heptane dual orexin receptor antagonist (DORA) into orally bioavailable, brain penetrating, selective orexin-1 receptor (OX1R) antagonists. This resulted in the discovery of our first candidate for clinical development, JNJ-54717793.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmedchemlett.0c00085DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7549262PMC
October 2020

Translational evaluation of novel selective orexin-1 receptor antagonist JNJ-61393215 in an experimental model for panic in rodents and humans.

Transl Psychiatry 2020 09 7;10(1):308. Epub 2020 Sep 7.

Janssen Research & Development, LLC, San Diego, CA, USA.

Orexin neurons originating in the perifornical and lateral hypothalamic area project to anxiety- and panic-associated neural circuitry, and are highly reactive to anxiogenic stimuli. Preclinical evidence suggests that the orexin system, and particularly the orexin-1 receptor (OX1R), may be involved in the pathophysiology of panic and anxiety. Selective OX1R antagonists thus may constitute a potential new treatment strategy for panic- and anxiety-related disorders. Here, we characterized a novel selective OX1R antagonist, JNJ-61393215, and determined its affinity and potency for human and rat OX1R in vitro. We also evaluated the safety, pharmacokinetic, and pharmacodynamic properties of JNJ-61393215 in first-in-human single- and multiple-ascending dose studies conducted. Finally, the potential anxiolytic effects of JNJ-61393215 were evaluated both in rats and in healthy men using 35% CO inhalation challenge to induce panic symptoms. In the rat CO model of panic anxiety, JNJ-61393215 demonstrated dose-dependent attenuation of CO-induced panic-like behavior without altering baseline locomotor or autonomic activity, and had minimal effect on spontaneous sleep. In phase-1 human studies, JNJ-61393215 at 90 mg demonstrated significant reduction (P < 0.02) in CO-induced fear and anxiety symptoms that were comparable to those obtained using alprazolam. The most frequently reported adverse events were somnolence and headache, and all events were mild in severity. These results support the safety, tolerability, and anxiolytic effects of JNJ-61393215, and validate CO exposure as a translational cross-species experimental model to evaluate the therapeutic potential of novel anxiolytic drugs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-020-00937-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7477545PMC
September 2020

Mutagenesis of GPR139 reveals ways to create gain or loss of function receptors.

Pharmacol Res Perspect 2019 02 7;7(1):e00466. Epub 2019 Feb 7.

Janssen Research & Development, LLC San Diego California.

GPR139 is a Gq-coupled receptor activated by the essential amino acids L-tryptophan (L-Trp) and L-phenylalanine (L-Phe). We carried out mutagenesis studies of the human GPR139 receptor to identify the critical structural motifs required for GPR139 activation. We applied site-directed and high throughput random mutagenesis approaches using a double addition normalization strategy to identify novel GPR139 sequences coding receptors that have altered sensitivity to endogenous ligands. This approach resulted in GPR139 clones with gain-of-function, reduction-of-function or loss-of-function mutations. The agonist pharmacology of these mutant receptors was characterized and compared to wild-type receptor using calcium mobilization, radioligand binding, and protein expression assays. The structure-activity data were incorporated into a homology model which highlights that many of the gain-of-function mutations are either in or immediately adjacent to the purported orthosteric ligand binding site, whereas the loss-of-function mutations were largely in the intracellular G-protein binding area or were disrupters of the helix integrity. There were also some reduction-of-function mutations in the orthosteric ligand binding site. These findings may not only facilitate the rational design of novel agonists and antagonists of GPR139, but also may guide the design of transgenic animal models to study the physiological function of GPR139.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/prp2.466DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6367278PMC
February 2019

Re-evaluation of Adrenocorticotropic Hormone and Melanocyte Stimulating Hormone Activation of GPR139 .

Front Pharmacol 2018 2;9:157. Epub 2018 Mar 2.

Janssen Research and Development, LLC, San Diego, CA, United States.

It is now well established that GPR139, a G-protein coupled receptor exclusively expressed in the brain and pituitary, is activated by the essential amino acids L-tryptophan (L-Trp) and L-phenylalanine (L-Phe) via G-coupling. The affinity and potency values of L-Trp and L-Phe are within the physiological concentration ranges of L-Trp and L-Phe. A recent paper suggests that adrenocorticotropic hormone (ACTH), α and β melanocyte stimulating hormones (α-MSH and β-MSH) and derivatives α-MSH/α-MSH can also activate GPR139 . We tested this hypothesis using guanosine 5'--(3-[S]thio)-triphosphate binding (GTPγS), calcium mobilization and [H]JNJ-63533054 radioligand binding assays. In the GTPγS binding assay, α-MSH, α-MSH/α-MSH, and β-MSH had no effect on [S]GTPγS incorporation in cell membranes expressing GPR139 up to 30 μM in contrast to the concentration dependent activation produced by L-Trp, JNJ-63533054, and TC-09311 (two small molecule GPR139 agonists). ACTH slightly decreased the basal level of [S]GTPγS incorporation at 30 μM. In the GPR139 radioligand binding assay, a moderate displacement of [H]JNJ-63533054 binding by ACTH and β-MSH was observed at 30 μM (40 and 30%, respectively); α-MSH, α-MSH/α-MSH did not displace any specific binding at 30 μM. In three different host cell lines stably expressing GPR139, α-MSH, and β-MSH did not stimulate calcium mobilization in contrast to L-Trp, JNJ-63533054, and TC-09311. ACTH, α-MSH/α-MSH only weakly stimulated calcium mobilization at 30 μM (<50% of EC). We then co-transfected GPR139 with the three melanocortin (MC) receptors (MC3R, MC4R, and MC5R) to test the hypothesis that ACTH, α-MSH, and β-MSH might stimulate calcium mobilization through a MCR/GPR139 interaction. All three MC peptides stimulated calcium response in cells co-transfected with GPR139 and MC3R, MC4R, or MC5R. The MC peptides did not stimulate calcium response in cells expressing MC3R or MC5R alone consistent with the G signaling transduction pathway of these receptors. In agreement with the previously reported multiple signaling pathways of MC4R, including G transduction pathway, the MC peptides produced a calcium response in cells expressing MC4R alone. Together, our findings do not support that GPR139 is activated by ACTH, α-MSH, and β-MSH at physiologically relevant concentration but we did unravel an interaction between GPR139 and the MCRs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2018.00157DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5863515PMC
March 2018

Evaluation of JNJ-54717793 a Novel Brain Penetrant Selective Orexin 1 Receptor Antagonist in Two Rat Models of Panic Attack Provocation.

Front Pharmacol 2017 9;8:357. Epub 2017 Jun 9.

Department of Anatomy and Cell Biology, Indiana University School of Medicine, IndianapolisIN, United States.

Orexin neurons originating in the perifornical and lateral hypothalamic area are highly reactive to anxiogenic stimuli and have strong projections to anxiety and panic-associated circuitry. Recent studies support a role for the orexin system and in particular the orexin 1 receptor (OX1R) in coordinating an integrative stress response. However, no selective OX1R antagonist has been systematically tested in two preclinical models of using panicogenic stimuli that induce panic attack in the majority of people with panic disorder, namely an acute hypercapnia-panic provocation model and a model involving chronic inhibition of GABA synthesis in the perifornical hypothalamic area followed by intravenous sodium lactate infusion. Here we report on a novel brain penetrant, selective and high affinity OX1R antagonist JNJ-54717793 (1S,2R,4R)-7-([(3-fluoro-2-pyrimidin-2-ylphenyl)carbonyl]--[5-(trifluoromethyl)pyrazin-2-yl]-7-azabicyclo[2.2.1]heptan-2-amine). JNJ-54717793 is a high affinity/potent OX1R antagonist and has an excellent selectivity profile including 50 fold versus the OX2R. receptor binding studies demonstrated that after oral administration JNJ-54717793 crossed the blood brain barrier and occupied OX1Rs in the rat brain. While JNJ-54717793 had minimal effect on spontaneous sleep in rats and in wild-type mice, its administration in OX2R knockout mice, selectively promoted rapid eye movement sleep, demonstrating target engagement and specific OX1R blockade. JNJ-54717793 attenuated CO and sodium lactate induced panic-like behaviors and cardiovascular responses without altering baseline locomotor or autonomic activity. These data confirm that selective OX1R antagonism may represent a novel approach of treating anxiety disorders, with no apparent sedative effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2017.00357DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465257PMC
June 2017

Identification and SAR of Glycine Benzamides as Potent Agonists for the GPR139 Receptor.

ACS Med Chem Lett 2015 Sep 20;6(9):1015-8. Epub 2015 Jul 20.

Janssen Research & Development, LLC , San Diego, California 92121, United States.

A focused high throughput screening for GPR139 was completed for a select 100K compounds, and new agonist leads were identified. Subsequent analysis and structure-activity relationship studies identified (S)-3-chloro-N-(2-oxo-2-((1-phenylethyl)amino)ethyl)benzamide 7c as a potent and selective agonist of hGPR139 with an EC50 = 16 nM. The compound was found to cross the blood-brain barrier and have good drug-like properties amenable for oral dosing in rat.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmedchemlett.5b00247DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569879PMC
September 2015

GPR139, an Orphan Receptor Highly Enriched in the Habenula and Septum, Is Activated by the Essential Amino Acids L-Tryptophan and L-Phenylalanine.

Mol Pharmacol 2015 Nov 8;88(5):911-25. Epub 2015 Sep 8.

Janssen Research & Development LLC, San Diego, California.

GPR139 is an orphan G-protein-coupled receptor expressed in the central nervous system. To identify its physiologic ligand, we measured GPR139 receptor activity from recombinant cells after treatment with amino acids, orphan ligands, serum, and tissue extracts. GPR139 activity was measured using guanosine 5'-O-(3-[(35)S]thio)-triphosphate binding, calcium mobilization, and extracellular signal-regulated kinases phosphorylation assays. Amino acids L-tryptophan (L-Trp) and L-phenylalanine (L-Phe) activated GPR139, with EC50 values in the 30- to 300-μM range, consistent with the physiologic concentrations of L-Trp and L-Phe in tissues. Chromatography of rat brain, rat serum, and human serum extracts revealed two peaks of GPR139 activity, which corresponded to the elution peaks of L-Trp and L-Phe. With the purpose of identifying novel tools to study GPR139 function, a high-throughput screening campaign led to the identification of a selective small-molecule agonist [JNJ-63533054, (S)-3-chloro-N-(2-oxo-2-((1-phenylethyl)amino)ethyl) benzamide]. The tritium-labeled JNJ-63533054 bound to cell membranes expressing GPR139 and could be specifically displaced by L-Trp and L-Phe. Sequence alignment revealed that GPR139 is highly conserved across species, and RNA sequencing studies of rat and human tissues indicated its exclusive expression in the brain and pituitary gland. Immunohistochemical analysis showed specific expression of the receptor in circumventricular regions of the habenula and septum in mice. Together, these findings suggest that L-Trp and L-Phe are candidate physiologic ligands for GPR139, and we hypothesize that this receptor may act as a sensor to detect dynamic changes of L-Trp and L-Phe in the brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.115.100412DOI Listing
November 2015

Characterization of JNJ-42847922, a Selective Orexin-2 Receptor Antagonist, as a Clinical Candidate for the Treatment of Insomnia.

J Pharmacol Exp Ther 2015 Sep 15;354(3):471-82. Epub 2015 Jul 15.

Janssen Research & Development, LLC, San Diego, California

Dual orexin receptor antagonists have been shown to promote sleep in various species, including humans. Emerging research indicates that selective orexin-2 receptor (OX2R) antagonists may offer specificity and a more adequate sleep profile by preserving normal sleep architecture. Here, we characterized JNJ-42847922 ([5-(4,6-dimethyl-pyrimidin-2-yl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-(2-fluoro-6-[1,2,3]triazol-2-yl-phenyl)-methanone), a high-affinity/potent OX2R antagonist. JNJ-42847922 had an approximate 2-log selectivity ratio versus the human orexin-1 receptor. Ex vivo receptor binding studies demonstrated that JNJ-42847922 quickly occupied OX2R binding sites in the rat brain after oral administration and rapidly cleared from the brain. In rats, single oral administration of JNJ-42847922 (3-30 mg/kg) during the light phase dose dependently reduced the latency to non-rapid eye movement (NREM) sleep and prolonged NREM sleep time in the first 2 hours, whereas REM sleep was minimally affected. The reduced sleep onset and increased sleep duration were maintained upon 7-day repeated dosing (30 mg/kg) with JNJ-42847922, then all sleep parameters returned to baseline levels following discontinuation. Although the compound promoted sleep in wild-type mice, it had no effect in OX2R knockout mice, consistent with a specific OX2R-mediated sleep response. JNJ-42847922 did not increase dopamine release in rat nucleus accumbens or produce place preference in mice after subchronic conditioning, indicating that the compound lacks intrinsic motivational properties in contrast to zolpidem. In a single ascending dose study conducted in healthy subjects, JNJ-42847922 increased somnolence and displayed a favorable pharmacokinetic and safety profile for a sedative/hypnotic, thus emerging as a promising candidate for further clinical development for the treatment of insomnia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.115.225466DOI Listing
September 2015

Novel Octahydropyrrolo[3,4-c]pyrroles Are Selective Orexin-2 Antagonists: SAR Leading to a Clinical Candidate.

J Med Chem 2015 Jul 8;58(14):5620-36. Epub 2015 Jul 8.

The preclinical characterization of novel octahydropyrrolo[3,4-c]pyrroles that are potent and selective orexin-2 antagonists is described. Optimization of physicochemical and DMPK properties led to the discovery of compounds with tissue distribution and duration of action suitable for evaluation in the treatment of primary insomnia. These selective orexin-2 antagonists are proven to promote sleep in rats, and this work ultimately led to the identification of a compound that progressed into human clinical trials for the treatment of primary insomnia. The synthesis, SAR, and optimization of the pharmacokinetic properties of this series of compounds as well as the identification of the clinical candidate, JNJ-42847922 (34), are described herein.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.5b00742DOI Listing
July 2015

Novel benzamide-based histamine h3 receptor antagonists: the identification of two candidates for clinical development.

ACS Med Chem Lett 2015 Apr 13;6(4):450-4. Epub 2015 Mar 13.

Janssen Pharmaceutical Company, a division of Johnson & Johnson Pharmaceutical Research & Development L.L.C. , 3210 Merryfield Row, San Diego, California 92121, United States.

The preclinical characterization of novel phenyl(piperazin-1-yl)methanones that are histamine H3 receptor antagonists is described. The compounds described are high affinity histamine H3 antagonists. Optimization of the physical properties of these histamine H3 antagonists led to the discovery of several promising lead compounds, and extensive preclinical profiling aided in the identification of compounds with optimal duration of action for wake promoting activity. This led to the discovery of two development candidates for Phase I and Phase II clinical trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/ml5005156DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4394347PMC
April 2015

A selective orexin-1 receptor antagonist attenuates stress-induced hyperarousal without hypnotic effects.

J Pharmacol Exp Ther 2015 Mar 12;352(3):590-601. Epub 2015 Jan 12.

Janssen Research & Development, LLC, San Diego, California (P.B., S.Y., B.T.S., T.P.L., D.N., B.L., M.W., J.S., N.C., T.L., C.D.); and Indiana University School of Medicine, Indianapolis, Indiana (P.L.J., A.S., S.D.F.).

Orexins (OXs) are peptides produced by perifornical (PeF) and lateral hypothalamic neurons that exert a prominent role in arousal-related processes, including stress. A critical role for the orexin-1 receptor (OX1R) in complex emotional behavior is emerging, such as overactivation of the OX1R pathway being associated with panic or anxiety states. Here we characterize a brain-penetrant, selective, and high-affinity OX1R antagonist, compound 56 [N-({3-[(3-ethoxy-6-methylpyridin-2-yl)carbonyl]-3-azabicyclo[4.1.0]hept-4-yl}methyl)-5-(trifluoromethyl)pyrimidin-2-amine]. Ex vivo receptor binding studies demonstrated that, after subcutaneous administration, compound 56 crossed the blood-brain barrier and occupied OX1Rs in the rat brain at lower doses than standard OX1R antagonists GSK-1059865 [5-bromo-N-({1-[(3-fluoro-2-methoxyphenyl)carbonyl]-5-methylpiperidin-2-yl}methyl)pyridin-2-amine], SB-334867 [1-(2-methyl-1,3-benzoxazol-6-yl)-3-(1,5-naphthyridin-4-yl)urea], and SB-408124 [1-(6,8-difluoro-2-methylquinolin-4-yl)-3-[4-(dimethylamino)phenyl]urea]. Although compound 56 did not alter spontaneous sleep in rats and in wild-type mice, its administration in orexin-2 receptor knockout mice selectively promoted rapid eye movement sleep, demonstrating target engagement and specific OX1R blockade. In a rat model of psychological stress induced by cage exchange, the OX1R antagonist prevented the prolongation of sleep onset without affecting sleep duration. In a rat model of panic vulnerability (involving disinhibition of the PeF OX region) to threatening internal state changes (i.e., intravenous sodium lactate infusion), compound 56 attenuated sodium lactate-induced panic-like behaviors and cardiovascular responses without altering baseline locomotor or autonomic activity. In conclusion, OX1R antagonism represents a novel therapeutic strategy for the treatment of various psychiatric disorders associated with stress or hyperarousal states.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.114.220392DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352589PMC
March 2015

Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ-47965567.

Br J Pharmacol 2013 Oct;170(3):624-40

Neuroscience Therapeutic Area, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA.

Background And Purpose: An increasing body of evidence suggests that the purinergic receptor P2X, ligand-gated ion channel, 7 (P2X7) in the CNS may play a key role in neuropsychiatry, neurodegeneration and chronic pain. In this study, we characterized JNJ-47965567, a centrally permeable, high-affinity, selective P2X7 antagonist.

Experimental Approach: We have used a combination of in vitro assays (calcium flux, radioligand binding, electrophysiology, IL-1β release) in both recombinant and native systems. Target engagement of JNJ-47965567 was demonstrated by ex vivo receptor binding autoradiography and in vivo blockade of Bz-ATP induced IL-1β release in the rat brain. Finally, the efficacy of JNJ-47965567 was tested in standard models of depression, mania and neuropathic pain.

Key Results: JNJ-47965567 is potent high affinity (pKi 7.9 ± 0.07), selective human P2X7 antagonist, with no significant observed speciation. In native systems, the potency of the compound to attenuate IL-1β release was 6.7 ± 0.07 (human blood), 7.5 ± 0.07 (human monocytes) and 7.1 ± 0.1 (rat microglia). JNJ-47965567 exhibited target engagement in rat brain, with a brain EC50 of 78 ± 19 ng·mL(-1) (P2X7 receptor autoradiography) and functional block of Bz-ATP induced IL-1β release. JNJ-47965567 (30 mg·kg(-1) ) attenuated amphetamine-induced hyperactivity and exhibited modest, yet significant efficacy in the rat model of neuropathic pain. No efficacy was observed in forced swim test.

Conclusion And Implications: JNJ-47965567 is centrally permeable, high affinity P2X7 antagonist that can be used to probe the role of central P2X7 in rodent models of CNS pathophysiology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/bph.12314DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3792000PMC
October 2013

The discovery of potent selective NPY Y(2) antagonists.

Bioorg Med Chem Lett 2013 Jul 22;23(14):4141-4. Epub 2013 May 22.

Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA 92121, USA.

A series of small molecules with a piperidinyl core were synthesized and tested for binding affinity (IC50) at human Neuropeptide Y Y2 receptor. Various amide related analogs (ureas, reversed amides, and sulfonamides) were evaluated. Several potent and selective NPY Y2 antagonists were identified.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2013.05.038DOI Listing
July 2013

Translational evaluation of JNJ-18038683, a 5-hydroxytryptamine type 7 receptor antagonist, on rapid eye movement sleep and in major depressive disorder.

J Pharmacol Exp Ther 2012 Aug 8;342(2):429-40. Epub 2012 May 8.

Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, CA 92109, USA.

In rodents 5-hydroxytryptamine type 7 (5-HT(7)) receptor blockade has been shown to be effective in models of depression and to increase the latency to rapid eye movement (REM) sleep and decrease REM duration. In the clinic, the REM sleep reduction observed with many antidepressants may serve as a biomarker. We report here the preclinical and clinical evaluation of a 5-HT(7) receptor antagonist, (3-(4-chlorophenyl)-1,4,5,6,7,8-hexahydro-1-(phenylmethyl)pyrazolo[3,4-d]azepine 2-hydroxy-1,2,3-propanetricarboxylate) (JNJ-18038683). In rodents, JNJ-18038683 increased the latency to REM sleep and decreased REM duration, and this effect was maintained after repeated administration for 7 days. The compound was effective in the mouse tail suspension test. JNJ-18038683 enhanced serotonin transmission, antidepressant-like behavior, and REM sleep suppression induced by citalopram in rodents. In healthy human volunteers JNJ-18038683 prolonged REM latency and reduced REM sleep duration, demonstrating that the effect of 5-HT(7) blockade on REM sleep translated from rodents to humans. Like in rats, JNJ-18038683 enhanced REM sleep suppression induced by citalopram in humans, although a drug-drug interaction could not be ruled out. In a double-blind, active, and placebo-controlled clinical trial in 225 patients suffering from major depressive disorder, neither treatment with pharmacologically active doses of JNJ-18038683 or escitalopram separated from placebo, indicating a failed study lacking assay sensitivity. Post hoc analyses using an enrichment window strategy, where all the efficacy data from sites with an implausible high placebo response [placebo group Montgomery-Åsberg Depression Rating Scale (MADRS) < = 12] and from sites with no placebo response (MADRS > = 28) are removed, there was a clinically meaningful difference between JNJ-18038683 and placebo. Further clinical studies are required to characterize the potential antidepressant efficacy of JNJ-18038683.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.112.193995DOI Listing
August 2012

In vitro pharmacological characterization of RXFP3 allosterism: an example of probe dependency.

PLoS One 2012 7;7(2):e30792. Epub 2012 Feb 7.

Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, California, United States of America.

Recent findings suggest that the relaxin-3 neural network may represent a new ascending arousal pathway able to modulate a range of neural circuits including those affecting circadian rhythm and sleep/wake states, spatial and emotional memory, motivation and reward, the response to stress, and feeding and metabolism. Therefore, the relaxin-3 receptor (RXFP3) is a potential therapeutic target for the treatment of various CNS diseases. Here we describe a novel selective RXFP3 receptor positive allosteric modulator (PAM), 3-[3,5-Bis(trifluoromethyl)phenyl]-1-(3,4-dichlorobenzyl)-1-[2-(5-methoxy-1H-indol-3-yl)ethyl]urea (135PAM1). Calcium mobilization and cAMP accumulation assays in cell lines expressing the cloned human RXFP3 receptor show the compound does not directly activate RXFP3 receptor but increases functional responses to amidated relaxin-3 or R3/I5, a chimera of the INSL5 A chain and the Relaxin-3 B chain. 135PAM1 increases calcium mobilization in the presence of relaxin-3(NH2) and R3/I5(NH2) with pEC50 values of 6.54 (6.46 to 6.64) and 6.07 (5.94 to 6.20), respectively. In the cAMP accumulation assay, 135PAM1 inhibits the CRE response to forskolin with a pIC50 of 6.12 (5.98 to 6.27) in the presence of a probe (10 nM) concentration of relaxin-3(NH2). 135PAM1 does not compete for binding with the orthosteric radioligand, [(125)I] R3I5 (amide), in membranes prepared from cells expressing the cloned human RXFP3 receptor. 135PAM1 is selective for RXFP3 over RXFP4, which also responds to relaxin-3. However, when using the free acid (native) form of relaxin-3 or R3/I5, 135PAM1 doesn't activate RXFP3 indicating that the compound's effect is probe dependent. Thus one can exchange the entire A-chain of the probe peptide while retaining PAM activity, but the state of the probe's c-terminus is crucial to allosteric activity of the PAM. These data demonstrate the existence of an allosteric site for modulation of this GPCR as well as the subtlety of changes in probe molecules that can affect allosteric modulation of RXFP3.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030792PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274524PMC
July 2012

The discovery and synthesis of JNJ 31020028, a small molecule antagonist of the Neuropeptide Y Y₂ receptor.

Bioorg Med Chem Lett 2011 Sep 18;21(18):5552-6. Epub 2011 Jul 18.

Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA.

A series of small molecules based on a chemotype identified from our compound collection were synthesized and tested for binding affinity (IC(50)) at the human Neuropeptide Y Y(2) receptor (NPY Y(2)). Six of the 23 analogs tested possessed an NPY Y(2) IC(50) ≤ 15 nM. One member of this series, JNJ 31020028, is a selective, high affinity, receptor antagonist existing as a racemic mixture. As such a synthetic route to the desired enantiomer was designed starting from commercially available (S)-(+)-mandelic acid.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2011.06.136DOI Listing
September 2011

Novel tetrahydropyrido[3,2-c]pyrroles as 5-HT(7) antagonists.

Bioorg Med Chem Lett 2011 Jan 24;21(1):42-4. Epub 2010 Nov 24.

Johnson & Johnson Pharmaceutical Research and Development, LLC, 3210 Merryfield Row, San Diego, CA 92121, United States.

The synthesis and SAR for a novel series of tetrahydropyrido[3,2-c]pyrroles is described. Optimization of the pendant aryl ring lead to high binding affinity at the 5-HT(7) receptor when small lipophilic groups were placed in the para position. Modification of the N-benzyl group and secondary amine were not well tolerated. A representative set of compounds was shown to be functional antagonists of the 5-HT(7) receptor.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2010.11.078DOI Listing
January 2011

Indole- and benzothiophene-based histamine H3 antagonists.

Bioorg Med Chem Lett 2010 Nov 27;20(21):6226-30. Epub 2010 Aug 27.

Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA 92121-1126, United States.

Previous research on histamine H(3) antagonists has led to the development of a pharmacophore model consisting of a central phenyl core flanked by two alkylamine groups. Recent investigation of the replacement of the central phenyl core with heteroaromatic fragments resulted in the preparation of novel 3,5-, 3,6- and 3,7-substituted indole and 3,5-substituted benzothiophene analogs that demonstrate good to excellent hH(3) affinities. Select analogs were profiled in a rat pharmacokinetic model.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2010.08.103DOI Listing
November 2010

Pre-clinical characterization of aryloxypyridine amides as histamine H3 receptor antagonists: identification of candidates for clinical development.

Bioorg Med Chem Lett 2010 Jul 16;20(14):4210-4. Epub 2010 May 16.

Johnson & Johnson Pharmaceutical Research & Development L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA.

The pre-clinical characterization of novel aryloxypyridine amides that are histamine H(3) receptor antagonists is described. These compounds are high affinity histamine H(3) ligands that penetrate the CNS and occupy the histamine H(3) receptor in rat brain. Several compounds were extensively profiled pre-clinically leading to the identification of two compounds suitable for nomination as development candidates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2010.05.041DOI Listing
July 2010

Novel substituted pyrrolidines are high affinity histamine H3 receptor antagonists.

Bioorg Med Chem Lett 2010 May 20;20(9):2755-60. Epub 2010 Mar 20.

Johnson & Johnson Pharmaceutical Research & Development L.L.C., 3210 Merryfield Row, San Diego, CA 92121, United States.

Pre-clinical characterization of novel substituted pyrrolidines that are high affinity histamine H(3) receptor antagonists is described. These compounds efficiently penetrate the CNS and occupy the histamine H(3) receptor in rat brain following oral administration. One compound, (2S,4R)-1-[2-(4-cyclobutyl-[1,4]diazepane-1-carbonyl)-4-(3-fluoro-phenoxy)-pyrrolidin-1-yl]-ethanone, was extensively profiled and shows promise as a potential clinical candidate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2010.03.071DOI Listing
May 2010

Mutagenesis studies of neuropeptide S identify a suitable peptide tracer for neuropeptide S receptor binding studies and peptides selectively activating the I(107) variant of human neuropeptide S receptor.

Eur J Pharmacol 2010 Jun 20;635(1-3):27-33. Epub 2010 Mar 20.

Johnson & Johnson Pharmaceutical Research & Development, L.L.C., San Diego, CA 92121, USA.

Neuropeptide S and its receptor represent a novel neurotransmitter system mainly expressed in the brain. A single nucleotide polymorphism in the first extracellular loop (I107) increases the potency of neuropeptide S and has been identified for both the human neuropeptide S receptor short (A) and long (B) C-terminal forms. Preliminary human genetic studies link this polymorphism to asthma, panic disorders and altered sleep behavior. No polymorphism or splice variants have been reported for the rat neuropeptide S receptor, however it carries an isoleucine at position 107. To identify a suitable tracer for neuropeptide S receptor binding and investigate the role of specific amino acids within neuropeptide S we carried out mutagenesis of the peptide and assessed the ability of the mutations to stimulate calcium release in HEK293 cells expressing human neuropeptide S receptor variants (A, B, AI(107), BI(107)) and rat neuropeptide S receptor. Replacement of threonine at position 8 by arginine and methionine at position 10 by tyrosine resulted in a mutant peptide slightly more potent on all neuropeptide S receptor variants compared to neuropeptide S and more importantly the iodinated mutant peptide was found to be a suitable tracer for binding studies with improved signal to noise ratio and stability compared to [(125)I-Y(10)] neuropeptide S. Replacement of serine at position 1 of neuropeptide S peptide by arginine resulted in a complete loss of potency for the neuropeptide S receptor (long and short form) but not for the I(107) receptor variants (long and short) or rat neuropeptide S receptor.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2010.03.008DOI Listing
June 2010

In vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), a selective brain penetrant small molecule antagonist of the neuropeptide Y Y(2) receptor.

Psychopharmacology (Berl) 2010 Feb 2;208(2):265-77. Epub 2009 Dec 2.

Johnson & Johnson Pharmaceutical Research and Development, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA.

Rationale: The lack of potent, selective, brain penetrant Y(2) receptor antagonists has hampered in vivo functional studies of this receptor.

Objective: Here, we report the in vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), a novel Y(2) receptor antagonist.

Methods: The affinity of JNJ-31020028 was determined by inhibition of the PYY binding to human Y(2) receptors in KAN-Ts cells and rat Y(2) receptors in rat hippocampus. The functional activity was determined by inhibition of PYY-stimulated calcium responses in KAN-Ts cells expressing a chimeric G protein Gqi5 and in the rat vas deferens (a prototypical Y(2) bioassay). Ex vivo receptor occupancy was revealed by receptor autoradiography. JNJ-31020028 was tested in vivo with microdialysis, in anxiety models, and on corticosterone release.

Results: JNJ-31020028 bound with high affinity (pIC(50) = 8.07 +/- 0.05, human, and pIC(50) = 8.22 +/- 0.06, rat) and was >100-fold selective versus human Y(1), Y(4), and Y(5) receptors. JNJ-31020028 was demonstrated to be an antagonist (pK(B) = 8.04 +/- 0.13) in functional assays. JNJ-31020028 occupied Y(2) receptor binding sites (approximately 90% at 10 mg/kg) after subcutaneous administration in rats. JNJ-31020028 increased norepinephrine release in the hypothalamus, consistent with the colocalization of norepinephrine and neuropeptide Y. In a variety of anxiety models, JNJ-31020028 was found to be ineffective, although it did block stress-induced elevations in plasma corticosterone, without altering basal levels, and normalized food intake in stressed animals without affecting basal food intake.

Conclusion: These results suggest that Y(2) receptors may not be critical for acute behaviors in rodents but may serve modulatory roles that can only be elucidated under specific situational conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00213-009-1726-xDOI Listing
February 2010

Probing the functional domains of relaxin-3 and the creation of a selective antagonist for RXFP3/GPCR135 over relaxin receptor RXFP1/LGR7.

Ann N Y Acad Sci 2009 Apr;1160:31-7

Johnson & Johnson Pharmaceutical Research & Development, LLC, San Diego, California 92121, USA.

Both relaxin-3 and its receptor (RXFP3, also known as GPCR135) are predominantly expressed in brain regions known to play important roles in processing sensory signals. Recent studies have shown that relaxin-3 is involved in the regulation of stress and feeding behaviors. The mechanisms underlying the involvement of relaxin-3/RXFP3 in the regulation of stress, feeding, and other potential functions remain to be studied. Since relaxin-3 also activates the relaxin receptor (RXFP1, also known as LGR7), which is also expressed in the brain, selective RXFP3 agonists and antagonists are crucial for study of the physiological functions of relaxin-3 and RXFP3 in vivo. The finding that the B chain of relaxin-3 is an agonist for RXFP3 (albeit at low potency) but not RXFP1 suggests that the B chain of relaxin-3 plays a dominant role for RXFP3 binding and activation. Chimeric peptide studies using the B chain from relaxin-3 and the A chains from different members of the insulin and relaxin family have confirmed this hypothesis and led to the generation of R3/I5 (a chimeric peptide with relaxin-3 B chain and INSL5 A chain) as a selective agonist for RXFP3 over RXFP1. Truncation of the C-terminus of the B chain of R3/I5 results in a high-affinity antagonist, R3(BDelta23-27)R/I5, for RXFP3 over RXFP1. R3(BDelta23-27)R/I5 has pA2 values of 9.15 and 9.6 for human and rat RXFP3, respectively, but has no affinity or agonistic activity for the human and rat RXFP1. Ongoing and future in vivo studies using the selective agonist and antagonist for RXFP3 will shed light on the physiological role of the relaxin-3 system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2008.03790.xDOI Listing
April 2009

2-Aryloxymethylmorpholine histamine H(3) antagonists.

Bioorg Med Chem Lett 2008 Nov 24;18(21):5796-9. Epub 2008 Sep 24.

Johnson & Johnson Pharmaceutical Research & Development L.L.C., San Diego, CA 92121-1126, USA.

The synthesis and biological activity of a new series of 2-aryloxymethylmorpholine histamine H(3) antagonists is described. The new compounds are high affinity histamine H(3) ligands that penetrate the CNS and occupy the histamine H(3) receptor in rat brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2008.09.077DOI Listing
November 2008

2-Alkyl-4-aryl-pyrimidine fused heterocycles as selective 5-HT2A antagonists.

Bioorg Med Chem Lett 2008 Mar 30;18(6):2103-8. Epub 2008 Jan 30.

Johnson & Johnson Pharmaceutical Research and Development, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA.

The synthesis and SAR for a novel series of 2-alkyl-4-aryl-tetrahydro-pyrido-pyrimidines and 2-alkyl-4-aryl-tetrahydro-pyrimido-azepines is described. Representative compounds were shown to be subtype selective 5-HT(2A) antagonists. Optimal placement of a basic nitrogen relative to the pyrimidine and the presence of a 4-fluorophenyl group in the pyrimidine 4-position was found to have a profound effect on affinity and selectivity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2008.01.090DOI Listing
March 2008

Synthesis and biological activity of piperazine and diazepane amides that are histamine H3 antagonists and serotonin reuptake inhibitors.

Bioorg Med Chem Lett 2008 Jan 13;18(1):39-43. Epub 2007 Nov 13.

Johnson & Johnson Pharmaceutical Research & Development L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA.

The synthesis and biological activity of a new series of piperazine and diazepane amides is described. The new compounds are high affinity histamine H3 ligands and serotonin reuptake inhibitors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2007.11.016DOI Listing
January 2008

R3(BDelta23 27)R/I5 chimeric peptide, a selective antagonist for GPCR135 and GPCR142 over relaxin receptor LGR7: in vitro and in vivo characterization.

J Biol Chem 2007 Aug 2;282(35):25425-35. Epub 2007 Jul 2.

Johnson & Johnson Pharmaceutical Research and Development, LLC, San Diego, California 92121, USA.

Both relaxin-3 and its receptor (GPCR135) are expressed predominantly in brain regions known to play important roles in processing sensory signals. Recent studies have shown that relaxin-3 is involved in the regulation of stress and feeding behaviors. The mechanisms underlying the involvement of relaxin-3/GPCR135 in the regulation of stress, feeding, and other potential functions remain to be studied. Because relaxin-3 also activates the relaxin receptor (LGR7), which is also expressed in the brain, selective GPCR135 agonists and antagonists are crucial to the study of the physiological functions of relaxin-3 and GPCR135 in vivo. Previously, we reported the creation of a selective GPCR135 agonist (a chimeric relaxin-3/INSL5 peptide designated R3/I5). In this report, we describe the creation of a high affinity antagonist for GPCR135 and GPCR142 over LGR7. This GPCR135 antagonist, R3(BDelta23-27)R/I5, consists of the relaxin-3 B-chain with a replacement of Gly23 to Arg, a truncation at the C terminus (Gly24-Trp27 deleted), and the A-chain of INSL5. In vitro pharmacological studies showed that R3(BDelta23-27)R/I5 binds to human GPCR135 (IC50=0.67 nM) and GPCR142 (IC50=2.29 nM) with high affinity and is a potent functional GPCR135 antagonist (pA2=9.15) but is not a human LGR7 ligand. Furthermore, R3(BDelta23-27)R/I5 had a similar binding profile at the rat GPCR135 receptor (IC50=0.25 nM, pA2=9.6) and lacked affinity for the rat LGR7 receptor. When administered to rats intracerebroventricularly, R3(BDelta23-27)R/I5 blocked food intake induced by the GPCR135 selective agonist R3/I5. Thus, R3(BDelta23-27)R/I5 should prove a useful tool for the further delineation of the functions of the relaxin-3/GPCR135 system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M701416200DOI Listing
August 2007

G-protein-coupled receptor (GPCR)-142 does not contribute to relaxin-3 binding in the mouse brain: further support that relaxin-3 is the physiological ligand for GPCR135.

Neuroendocrinology 2005 13;82(3-4):139-50. Epub 2006 Jan 13.

Johnson & Johnson Pharmaceutical Research & Development, LLC, San Diego, CA 92121, USA.

Relaxin-3 is a recently discovered member of the insulin/relaxin superfamily that has been shown to be the endogenous ligand for G-protein-coupled receptor (GPCR)135 (SALPR). In addition, relaxin-3 has demonstrated affinity and functional agonism for GPCR142 (GPR100) and LGR7 receptors in vitro. Recent evidence suggests GPCR142 is the insulin-like peptide 5 (INSL5) receptor and LGR7 is the actual relaxin receptor. We have recently described a chimeric R3/I5 peptide that selectively activates GPCR135 and GPCR142, but lacks affinity for LGR7. GPCR142 is a pseudogene in the rat, which allowed the use of [(125)I]-R3/I5 to show GPCR135-like binding sites in the rat central nervous system by autoradiography. However, mouse GPCR142 is a viable gene. In the present study we explore whether GPCR142 is expressed in the mouse brain and whether it is likely to contribute to or interfere with the pharmacological evaluation of relaxin-3 ligands. Competition binding studies confirmed mINSL5 and [(125)I]-mINSL5 bind to mGPCR142 with high affinity. However, no detectable specific [(125)I]-mINSL5 binding sites were detected throughout the mouse brain and unlabelled INSL5 did not displace [(125)I]-R3/I5 binding sites, indicating an absence of detectable GPCR142 binding sites. Consistent with these findings, neither GPCR142 nor INSL5 mRNA were detectable in mouse brain by in situ hybridization. Overall, the distribution of GPCR135 mRNA overlapped with the distribution of GPCR135 binding sites shown by autoradiography using [(125)I]-R3/I5. GPCR135 mRNA and GPCR135 receptor binding sites are most prominent in the mouse amygdala and hypothalamus. These data suggest that relaxin-3/GPCR135 is the receptor ligand pair with physiological relevance in mouse brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000091267DOI Listing
June 2006

A novel form of neurotensin post-translationally modified by arginylation.

J Biol Chem 2005 Oct 8;280(42):35089-97. Epub 2005 Aug 8.

Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden.

A novel bioactive form of neurotensin post-translationally modified at a Glu residue was isolated from porcine intestine. Purification of the peptide was guided by detection of intracellular Ca2+ release in SK-N-SH neuroblastoma cells. Using high resolution accurate mass analysis on an ion trap Fourier transform mass spectrometer, the post-translational modification was identified as arginine linked to the gamma-carboxyl of Glu via an isopeptide bond, and we named the newly identified peptide "arginylated neurotensin" (R-NT, N-(neurotensin-C5-4-yl)arginine). Although arginylation is a known modification of N-terminal amino groups in proteins, its presence at a Glu side chain is unique. The finding places neurotensin among the few physiologically active peptides that occur both in post-translationally modified and unmodified forms. Pharmacologically, we characterized R-NT for its ligand activity on three known neurotensin receptors, NTR1, -2, and -3, and found that R-NT has similar pharmacological properties to those of neurotensin, however, with a slightly higher affinity to all three receptors. We expressed the intracellular receptor NTR3 as a soluble protein secreted into the cell culture medium, which allowed characterization of its R-NT and neurotensin binding properties. The creation of soluble NTR3 also provides a potential tool for neutralizing neurotensin action in vivo and in vitro. We have shown that SK-N-SH neuroblastoma cells express NTR1 and NTR3 but not NTR2, suggesting that the Ca2+ mobilization elicited by R-NT is via NTR1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M502567200DOI Listing
October 2005