Publications by authors named "Diana Conte Camerino"

92 Publications

Dual Action of Mexiletine and Its Pyrroline Derivatives as Skeletal Muscle Sodium Channel Blockers and Anti-oxidant Compounds: Toward Novel Therapeutic Potential.

Front Pharmacol 2017 12;8:907. Epub 2018 Jan 12.

Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy.

Mexiletine (Mex) has been recently appointed as an orphan-drug in myotonic-syndromes, being a potent use-dependent blocker of skeletal-muscle sodium channels (Na1.4). Available evidences about a potential anti-oxidant effect of Mex and its tetramethyl-pyrroline-derivatives , suggest the possibility to further enlarge the therapeutic potential of Mex-like compounds in myopathies in which alteration of excitation-contraction coupling is paralleled by oxidative stress. In line with this and based on our previous structure-activity-relationship studies, we synthesized new compounds with a tetramethyl-pyrroline-ring on the amino-group of both Mex (VM11) and of its potent use-dependent isopropyl-derivative (CI16). The compounds were tested for their ability to block native Na1.4 and to exert cyto-protective effects against oxidative-stress injury in myoblasts. Voltage-clamp-recordings on adult myofibers were performed to assess the tonic and use-dependent block of peak sodium-currents (I) by VM11 and CI16, as well as Mex, VM11 and CI16 were 3 and 6-fold more potent than Mex in producing a tonic-block of peak sodium-currents (I), respectively. Interestingly, CI16 showed a 40-fold increase of potency with respect to Mex during high-frequency stimulation (10-Hz), resulting the strongest use-dependent Mex-like compound so far. The derivatives also behaved as inactivated channel blockers, however the voltage dependent block was modest. The experimental data fitted with the molecular-modeling simulation based on previously proposed interaction of main pharmacophores with Na1.4 binding-site. CI16 and VM11 were then compared to Mex and its isopropyl derivative (Me5) for the ability to protect CC-cells from HO-cytotoxicity in the concentration range effective on Na1.4. Mex and Me5 showed a moderate cyto-protective effect in the presence of HO, Importantly, CI16 and VM11 showed a remarkable cyto-protection at concentrations effective for use-dependent block of Na1.4. This effect was comparable to that of selected anti-oxidant drugs proved to exert protective effect in preclinical models of progressive myopathies such as muscular dystrophies. Then, the tetramethyl-pyrroline compounds have increased therapeutic profile as sodium channel blockers and an interesting cyto-protective activity. The overall profile enlarges therapeutic potential from channelopathies to myopathies in which alteration of excitation-contraction coupling is paralleled by oxidative-stress, i.e., muscular dystrophies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2017.00907DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5770958PMC
January 2018

Coexistence of CLCN1 and SCN4A mutations in one family suffering from myotonia.

Neurogenetics 2017 Dec 9;18(4):219-225. Epub 2017 Oct 9.

Center for Neuromuscular Diseases and Neuropathies, Unit of Neurology ASST "Spedali Civili", University of Brescia, Brescia, Italy.

Non-dystrophic myotonias are characterized by clinical overlap making it challenging to establish genotype-phenotype correlations. We report clinical and electrophysiological findings in a girl and her father concomitantly harbouring single heterozygous mutations in SCN4A and CLCN1 genes. Functional characterization of N1297S hNav1.4 mutant was performed by patch clamp. The patients displayed a mild phenotype, mostly resembling a sodium channel myotonia. The CLCN1 c.501C>G (p.F167L) mutation has been already described in recessive pedigrees, whereas the SCN4A c.3890A>G (p.N1297S) variation is novel. Patch clamp experiments showed impairment of fast and slow inactivation of the mutated Nav1.4 sodium channel. The present findings suggest that analysis of both SCN4A and CLCN1 genes should be considered in myotonic patients with atypical clinical and neurophysiological features.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10048-017-0525-5DOI Listing
December 2017

Toward precision medicine in myotonic syndromes.

Oncotarget 2017 Feb;8(9):14279-14280

Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.15263DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5362403PMC
February 2017

Increased sodium channel use-dependent inhibition by a new potent analogue of tocainide greatly enhances in vivo antimyotonic activity.

Neuropharmacology 2017 02 13;113(Pt A):206-216. Epub 2016 Oct 13.

Section of Pharmacology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70126 Bari, Italy. Electronic address:

Although the sodium channel blocker, mexiletine, is the first choice drug in myotonia, some myotonic patients remain unsatisfied due to contraindications, lack of tolerability, or incomplete response. More therapeutic options are thus needed for myotonic patients, which require clinical trials based on solid preclinical data. In previous structure-activity relationship studies, we identified two newly-synthesized derivatives of tocainide, To040 and To042, with greatly enhanced potency and use-dependent behavior in inhibiting sodium currents in frog skeletal muscle fibers. The current study was performed to verify their potential as antimyotonic agents. Patch-clamp experiments show that both compounds, especially To042, are greatly more potent and use-dependent blockers of human skeletal muscle hNav1.4 channels compared to tocainide and mexiletine. Reduced effects on F1586C hNav1.4 mutant suggest that the compounds bind to the local anesthetic receptor, but that the increased hindrance and lipophilia of the N-substituent may further strengthen drug-receptor interaction and use-dependence. Compared to mexiletine, To042 was 120 times more potent to block hNav1.4 channels in a myotonia-like cellular condition and 100 times more potent to improve muscle stiffness in vivo in a previously-validated rat model of myotonia. To explore toxicological profile, To042 was tested on hERG potassium currents, motor coordination using rotarod, and C2C12 cell line for cytotoxicity. All these experiments suggest a satisfactory therapeutic index for To042. This study shows that, owing to a huge use-dependent block of sodium channels, To042 is a promising candidate drug for myotonia and possibly other membrane excitability disorders, warranting further preclinical and human studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2016.10.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5154332PMC
February 2017

Statin-induced myotoxicity is exacerbated by aging: A biophysical and molecular biology study in rats treated with atorvastatin.

Toxicol Appl Pharmacol 2016 09 1;306:36-46. Epub 2016 Jul 1.

Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy. Electronic address:

Statin-induced skeletal muscle damage in rats is associated to the reduction of the resting sarcolemmal chloride conductance (gCl) and ClC-1 chloride channel expression. These drugs also affect the ClC-1 regulation by increasing protein kinase C (PKC) activity, which phosphorylate and close the channel. Also the intracellular resting calcium (restCa) level is increased. Similar alterations are observed in skeletal muscles of aged rats, suggesting a higher risk of statin myotoxicity. To verify this hypothesis, we performed a 4-5-weeks atorvastatin treatment of 24-months-old rats to evaluate the ClC-1 channel function by the two-intracellular microelectrodes technique as well as transcript and protein expression of different genes sensitive to statins by quantitative real-time-PCR and western blot analysis. The restCa was measured using FURA-2 imaging, and histological analysis of muscle sections was performed. The results show a marked reduction of resting gCl, in agreement with the reduced ClC-1 mRNA and protein expression in atorvastatin-treated aged rats, with respect to treated adult animals. The observed changes in myocyte-enhancer factor-2 (MEF2) expression may be involved in ClC-1 expression changes. The activity of PKC was also increased and further modulate the gCl in treated aged rats. In parallel, a marked reduction of the expression of glycolytic and mitochondrial enzymes demonstrates an impairment of muscle metabolism. No worsening of restCa or histological features was found in statin-treated aged animals. These findings suggest that a strong reduction of gCl and alteration of muscle metabolism coupled to muscle atrophy may contribute to the increased risk of statin-induced myopathy in the elderly.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2016.06.032DOI Listing
September 2016

Multidisciplinary study of a new ClC-1 mutation causing myotonia congenita: a paradigm to understand and treat ion channelopathies.

FASEB J 2016 10 20;30(10):3285-3295. Epub 2016 Jun 20.

Department of Pharmacy, Drug Sciences, University of Bari "Aldo Moro," Bari, Italy.

Myotonia congenita is an inherited disease that is characterized by impaired muscle relaxation after contraction caused by loss-of-function mutations in the skeletal muscle ClC-1 channel. We report a novel ClC-1 mutation, T335N, that is associated with a mild phenotype in 1 patient, located in the extracellular I-J loop. The purpose of this study was to provide a solid correlation between T335N dysfunction and clinical symptoms in the affected patient as well as to offer hints for drug development. Our multidisciplinary approach includes patch-clamp electrophysiology on T335N and ClC-1 wild-type channels expressed in tsA201 cells, Western blot and quantitative PCR analyses on muscle biopsies from patient and unaffected individuals, and molecular dynamics simulations using a homology model of the ClC-1 dimer. T335N channels display reduced chloride currents as a result of gating alterations rather than altered surface expression. Molecular dynamics simulations suggest that the I-J loop might be involved in conformational changes that occur at the dimer interface, thus affecting gating. Finally, the gene expression profile of T335N carrier showed a diverse expression of K channel genes, compared with control individuals, as potentially contributing to the phenotype. This experimental paradigm satisfactorily explained myotonia in the patient. Furthermore, it could be relevant to the study and therapy of any channelopathy.-Imbrici, P., Altamura, C., Camerino, G. M., Mangiatordi, G. F., Conte, E., Maggi, L., Brugnoni, R., Musaraj, K., Caloiero, R., Alberga, D., Marsano, R. M., Ricci, G., Siciliano, G., Nicolotti, O., Mora, M., Bernasconi, P., Desaphy, J.-F., Mantegazza, R., Camerino, D. C. Multidisciplinary study of a new ClC-1 mutation causing myotonia congenita: a paradigm to understand and treat ion channelopathies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201500079RDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5024700PMC
October 2016

Translational approach to address therapy in myotonia permanens due to a new SCN4A mutation.

Neurology 2016 May 29;86(22):2100-8. Epub 2016 Apr 29.

From the Departments of Biomedical Sciences and Human Oncology (J.-F.D.) and Pharmacy & Drug Sciences (R.C., J.R., P.I., D.C.C.), University of Bari Aldo Moro, Bari; Unit of Neuromuscular and Neurodegenerative Disorders (A.D.), Bambino Gesù Children's Hospital, Rome; Departments of Geriatrics, Neurosciences, and Orthopedics (A.M., M.L.M.), Institute of Neurology, Catholic University of the Sacred Heart, Rome; Dino Ferrari Centre (S.P., S.L.), Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan; and Neurology Unit (S.P., S.L.), IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.

Objective: We performed a clinical, functional, and pharmacologic characterization of the novel p.P1158L Nav1.4 mutation identified in a young girl presenting a severe myotonic phenotype.

Methods: Wild-type hNav1.4 channel and P1158L mutant were expressed in tsA201 cells for functional and pharmacologic studies using patch-clamp.

Results: The patient shows pronounced myotonia, slowness of movements, and generalized muscle hypertrophy. Because of general discomfort with mexiletine, she was given flecainide with satisfactory response. In vitro, mutant channels show a slower current decay and a rightward shift of the voltage dependence of fast inactivation. The voltage dependence of activation and slow inactivation were not altered. Mutant channels were less sensitive to mexiletine, whereas sensitivity to flecainide was not altered. The reduced inhibition of mutant channels by mexiletine was also observed using clinically relevant drug concentrations in a myotonic-like condition.

Conclusions: Clinical phenotype and functional alterations of P1158L support the diagnosis of myotonia permanens. Impairment of fast inactivation is consistent with the possible role of the channel domain III S4-S5 loop in the inactivation gate docking site. The reduced sensitivity of P1158L to mexiletine may have contributed to the unsatisfactory response of the patient. The success of flecainide therapy underscores the usefulness of in vitro functional studies to help in the choice of the best drug for each individual.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000002721DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4891212PMC
May 2016

Kidney CLC-K chloride channels inhibitors: structure-based studies and efficacy in hypertension and associated CLC-K polymorphisms.

J Hypertens 2016 May;34(5):981-92

aDipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari, Bari bIstituto di Biofisica, CNR, Genova, Italy *Antonella Liantonio and Paola Imbrici contributed equally to the writing of this article.

Objective: Alterations in the handling of renal salt reabsorption may contribute to interindividual differences in blood pressure regulation and susceptibility to hypertension. CLC-K chloride channels and their accessory subunit barttin play a pivotal role in kidney by controlling chloride and water absorption. Compounds selective for CLC-Ks, such as the benzofuran derivative MT-189, may have a significant therapeutic potential. Here, we assessed the feasibility of using CLC-K blockers in hypertension and aimed at enhancing drug inhibitory affinity.

Methods And Results: We demonstrated that acute in-vivo administration of MT-189 to spontaneously hypertensive rats (SHR) caused a reduction of blood pressure and defined the CLC-K/barttin gene expression pattern in kidney of SHR in comparison with normotensive Wistar-Kyoto rats. Based on MT-189, we designed and tested a new series of benzofuran derivatives on CLC-K chloride channels heterologously expressed in HEK293 cells. These studies enabled us to elucidate the causative molecular relationship for obtaining the most potent and selective inhibitor (SRA-36) described so far, with an IC50 of 6.6 ± 1 μmol/l. The biophysical and pharmacological characterization of A447T CLC-Ka and Y315F CLC-Ka, both polymorphisms associated with hypertension, showed that SRA-36 is an efficacious inhibitor of the chloride currents sustained by these polymorphisms. Molecular docking studies allowed hypothesizing an inhibition mechanism for the considered ligands, laying the foundations for the rational design of new and more effective CLC-K inhibitors.

Conclusion: The SRA-36 molecule represents a new potential therapeutic option for hypertension.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/HJH.0000000000000876DOI Listing
May 2016

In vivo longitudinal study of rodent skeletal muscle atrophy using ultrasonography.

Sci Rep 2016 Feb 1;6:20061. Epub 2016 Feb 1.

Department of Biomedical Sciences &Human Oncology, Polyclinic Biological Research Institute, University of Bari Aldo Moro, P.zza Giulio Cesare 11, Bari, 70124 Italy.

Muscle atrophy is a widespread ill condition occurring in many diseases, which can reduce quality of life and increase morbidity and mortality. We developed a new method using non-invasive ultrasonography to measure soleus and gastrocnemius lateralis muscle atrophy in the hindlimb-unloaded rat, a well-accepted model of muscle disuse. Soleus and gastrocnemius volumes were calculated using the conventional truncated-cone method and a newly-designed sinusoidal method. For Soleus muscle, the ultrasonographic volume determined in vivo with either method was linearly correlated to the volume determined ex-vivo from excised muscles as muscle weight-to-density ratio. For both soleus and gastrocnemius muscles, a strong linear correlation was obtained between the ultrasonographic volume and the muscle fiber cross-sectional area determined ex-vivo on muscle cryosections. Thus ultrasonography allowed the longitudinal in vivo evaluation of muscle atrophy progression during hindlimb unloading. This study validates ultrasonography as a powerful method for the evaluation of rodent muscle atrophy in vivo, which would prove useful in disease models and therapeutic trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep20061DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4735519PMC
February 2016

Inhibition of voltage-gated sodium channels by sumatriptan bioisosteres.

Front Pharmacol 2015 24;6:155. Epub 2015 Jul 24.

Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro Bari, Italy.

Voltage-gated sodium channels are known to play a pivotal role in perception and transmission of pain sensations. Gain-of-function mutations in the genes encoding the peripheral neuronal sodium channels, hNav1.7-1.9, cause human painful diseases. Thus while treatment of chronic pain remains an unmet clinical need, sodium channel blockers are considered as promising druggable targets. In a previous study, we evaluated the analgesic activity of sumatriptan, an agonist of serotonin 5HT1B/D receptors, and some new chiral bioisosteres, using the hot plate test in the mouse. Interestingly, we observed that the analgesic effectiveness was not necessarily correlated to serotonin agonism. In this study, we evaluated whether sumatriptan and its congeners may inhibit heterologously expressed hNav1.7 sodium channels using the patch-clamp method. We show that sumatriptan blocks hNav1.7 channels only at very high, supratherapeutic concentrations. In contrast, its three analogs, namely 20b, (R)-31b, and (S)-22b, exert a dose and use-dependent sodium channel block. At 0.1 and 10 Hz stimulation frequencies, the most potent compound, (S)-22b, was 4.4 and 1.7 fold more potent than the well-known sodium channel blocker mexiletine. The compound induces a negative shift of voltage dependence of fast inactivation, suggesting higher affinity to the inactivated channel. Accordingly, we show that (S)-22b likely binds the conserved local anesthetic receptor within voltage-gated sodium channels. Combining these results with the previous ones, we hypothesize that use-dependent sodium channel blockade contributes to the analgesic activity of (R)-31b and (S)-22b. These later compounds represent promising lead compounds for the development of efficient analgesics, the mechanism of action of which may include a dual action on sodium channels and 5HT1D receptors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2015.00155DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4513211PMC
August 2015

Taurine: the appeal of a safe amino acid for skeletal muscle disorders.

J Transl Med 2015 Jul 25;13:243. Epub 2015 Jul 25.

Sezione di Farmacologia, Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy.

Taurine is a natural amino acid present as free form in many mammalian tissues and in particular in skeletal muscle. Taurine exerts many physiological functions, including membrane stabilization, osmoregulation and cytoprotective effects, antioxidant and anti-inflammatory actions as well as modulation of intracellular calcium concentration and ion channel function. In addition taurine may control muscle metabolism and gene expression, through yet unclear mechanisms. This review summarizes the effects of taurine on specific muscle targets and pathways as well as its therapeutic potential to restore skeletal muscle function and performance in various pathological conditions. Evidences support the link between alteration of intracellular taurine level in skeletal muscle and different pathophysiological conditions, such as disuse-induced muscle atrophy, muscular dystrophy and/or senescence, reinforcing the interest towards its exogenous supplementation. In addition, taurine treatment can be beneficial to reduce sarcolemmal hyper-excitability in myotonia-related syndromes. Although further studies are necessary to fill the gaps between animals and humans, the benefit of the amino acid appears to be due to its multiple actions on cellular functions while toxicity seems relatively low. Human clinical trials using taurine in various pathologies such as diabetes, cardiovascular and neurological disorders have been performed and may represent a guide-line for designing specific studies in patients of neuromuscular diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12967-015-0610-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4513970PMC
July 2015

Effects of Nandrolone in the Counteraction of Skeletal Muscle Atrophy in a Mouse Model of Muscle Disuse: Molecular Biology and Functional Evaluation.

PLoS One 2015 11;10(6):e0129686. Epub 2015 Jun 11.

Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.

Muscle disuse produces severe atrophy and a slow-to-fast phenotype transition in the postural Soleus (Sol) muscle of rodents. Antioxidants, amino-acids and growth factors were ineffective to ameliorate muscle atrophy. Here we evaluate the effects of nandrolone (ND), an anabolic steroid, on mouse skeletal muscle atrophy induced by hindlimb unloading (HU). Mice were pre-treated for 2-weeks before HU and during the 2-weeks of HU. Muscle weight and total protein content were reduced in HU mice and a restoration of these parameters was found in ND-treated HU mice. The analysis of gene expression by real-time PCR demonstrates an increase of MuRF-1 during HU but minor involvement of other catabolic pathways. However, ND did not affect MuRF-1 expression. The evaluation of anabolic pathways showed no change in mTOR and eIF2-kinase mRNA expression, but the protein expression of the eukaryotic initiation factor eIF2 was reduced during HU and restored by ND. Moreover we found an involvement of regenerative pathways, since the increase of MyoD observed after HU suggests the promotion of myogenic stem cell differentiation in response to atrophy. At the same time, Notch-1 expression was down-regulated. Interestingly, the ND treatment prevented changes in MyoD and Notch-1 expression. On the contrary, there was no evidence for an effect of ND on the change of muscle phenotype induced by HU, since no effect of treatment was observed on the resting gCl, restCa and contractile properties in Sol muscle. Accordingly, PGC1α and myosin heavy chain expression, indexes of the phenotype transition, were not restored in ND-treated HU mice. We hypothesize that ND is unable to directly affect the phenotype transition when the specialized motor unit firing pattern of stimulation is lacking. Nevertheless, through stimulation of protein synthesis, ND preserves protein content and muscle weight, which may result advantageous to the affected skeletal muscle for functional recovery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0129686PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466268PMC
May 2016

Clinical, Molecular, and Functional Characterization of CLCN1 Mutations in Three Families with Recessive Myotonia Congenita.

Neuromolecular Med 2015 Sep 26;17(3):285-96. Epub 2015 May 26.

Department of Neurosciences, University of Messina, Messina, Italy.

Myotonia congenita (MC) is an inherited muscle disease characterized by impaired muscle relaxation after contraction, resulting in muscle stiffness. Both recessive (Becker's disease) or dominant (Thomsen's disease) MC are caused by mutations in the CLCN1 gene encoding the voltage-dependent chloride ClC-1 channel, which is quite exclusively expressed in skeletal muscle. More than 200 CLCN1 mutations have been associated with MC. We provide herein a detailed clinical, molecular, and functional evaluation of four patients with recessive MC belonging to three different families. Four CLCN1 variants were identified, three of which have never been characterized. The c.244A>G (p.T82A) and c.1357C>T (p.R453W) variants were each associated in compound heterozygosity with c.568GG>TC (p.G190S), for which pathogenicity is already known. The new c.809G>T (p.G270V) variant was found in the homozygous state. Patch-clamp studies of ClC-1 mutants expressed in tsA201 cells confirmed the pathogenicity of p.G270V, which greatly shifts the voltage dependence of channel activation toward positive potentials. Conversely, the mechanisms by which p.T82A and p.R453W cause the disease remained elusive, as the mutated channels behave similarly to WT. The results also suggest that p.G190S does not exert dominant-negative effects on other mutated ClC-1 subunits. Moreover, we performed a RT-PCR quantification of selected ion channels transcripts in muscle biopsies of two patients. The results suggest gene expression alteration of sodium and potassium channel subunits in myotonic muscles; if confirmed, such analysis may pave the way toward a better understanding of disease phenotype and a possible identification of new therapeutic options.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12017-015-8356-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534513PMC
September 2015

ClC-1 chloride channels: state-of-the-art research and future challenges.

Front Cell Neurosci 2015 27;9:156. Epub 2015 Apr 27.

Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.

The voltage-dependent ClC-1 chloride channel belongs to the CLC channel/transporter family. It is a homodimer comprising two individual pores which can operate independently or simultaneously according to two gating modes, the fast and the slow gate of the channel. ClC-1 is preferentially expressed in the skeletal muscle fibers where the presence of an efficient Cl(-) homeostasis is crucial for the correct membrane repolarization and propagation of action potential. As a consequence, mutations in the CLCN1 gene cause dominant and recessive forms of myotonia congenita (MC), a rare skeletal muscle channelopathy caused by abnormal membrane excitation, and clinically characterized by muscle stiffness and various degrees of transitory weakness. Elucidation of the mechanistic link between the genetic defects and the disease pathogenesis is still incomplete and, at this time, there is no specific treatment for MC. Still controversial is the subcellular localization pattern of ClC-1 channels in skeletal muscle as well as its modulation by some intracellular factors. The expression of ClC-1 in other tissues such as in brain and heart and the possible assembly of ClC-1/ClC-2 heterodimers further expand the physiological properties of ClC-1 and its involvement in diseases. A recent de novo CLCN1 truncation mutation in a patient with generalized epilepsy indeed postulates an unexpected role of this channel in the control of neuronal network excitability. This review summarizes the most relevant and state-of-the-art research on ClC-1 chloride channels physiology and associated diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fncel.2015.00156DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410605PMC
May 2015

On the metabolically active form of metaglidasen: improved synthesis and investigation of its peculiar activity on peroxisome proliferator-activated receptors and skeletal muscles.

ChemMedChem 2015 Mar 29;10(3):555-65. Epub 2015 Jan 29.

Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70126 Bari (Italy).

Metaglidasen is a fibrate-like drug reported as a selective modulator of peroxisome proliferator-activated receptor γ (PPARγ), able to lower plasma glucose levels in the absence of the side effects typically observed with thiazolidinedione antidiabetic agents in current use. Herein we report an improved synthesis of metaglidasen's metabolically active form halofenic acid (R)-2 and that of its enantiomer (S)-2. The activity of the two stereoisomers was carefully examined on PPARα and PPARγ subtypes. As expected, both showed partial agonist activity toward PPARγ; the investigation of PPARα activity, however, led to unexpected results. In particular, (S)-2 was found to act as a partial agonist, whereas (R)-2 behaved as an antagonist. X-ray crystallographic studies with PPARγ were carried out to gain more insight on the molecular-level interactions and to propose a binding mode. Given the adverse effects provoked by fibrate drugs on skeletal muscle function, we also investigated the capacity of (R)-2 and (S)-2 to block conductance of the skeletal muscle membrane chloride channel. The results showed a more beneficial profile for (R)-2, the activity of which on skeletal muscle function, however, should not be overlooked in the ongoing clinical trials studying its long-term effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.201402462DOI Listing
March 2015

Calcium homeostasis is altered in skeletal muscle of spontaneously hypertensive rats: cytofluorimetric and gene expression analysis.

Am J Pathol 2014 Oct 30;184(10):2803-15. Epub 2014 Jul 30.

Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy.

Hypertension is often associated with skeletal muscle pathological conditions related to function and metabolism. The mechanisms underlying the development of these pathological conditions remain undefined. Because calcium homeostasis is a biomarker of muscle function, we assessed whether it is altered in hypertensive muscles. We measured resting intracellular calcium and store-operated calcium entry (SOCE) in fast- and slow-twitch muscle fibers from normotensive Wistar-Kyoto rats and spontaneously hypertensive rats (SHRs) by cytofluorimetric technique and determined the expression of SOCE gene machinery by real-time PCR. Hypertension caused a phenotype-dependent dysregulation of calcium homeostasis; the resting intracellular calcium of extensor digitorum longus and soleus muscles of SHRs were differently altered with respect to the related muscle of normotensive animals. In addition, soleus muscles of SHR showed reduced activity of the sarcoplasmic reticulum and decreased sarcolemmal calcium permeability at rest and after SOCE activation. Accordingly, we found an alteration of the expression levels of some SOCE components, such as stromal interaction molecule 1, calcium release-activated calcium modulator 1, and transient receptor potential canonical 1. The hypertension-induced alterations of calcium homeostasis in the soleus muscle of SHRs occurred with changes of some functional outcomes as excitability and resting chloride conductance. We provide suitable targets for therapeutic interventions aimed at counterbalancing muscle performance decline in hypertension, and propose the reported calcium-dependent parameters as indexes to predict how the antihypertensive drugs could influence muscle function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajpath.2014.06.020DOI Listing
October 2014

I-J loop involvement in the pharmacological profile of CLC-K channels expressed in Xenopus oocytes.

Biochim Biophys Acta 2014 Nov 26;1838(11):2745-56. Epub 2014 Jul 26.

Istituto di Biofisica, CNR, Via De Marini 6, 16149 Genoa, Italy. Electronic address:

CLC-K chloride channels and their subunit, barttin, are crucial for renal NaCl reabsorption and for inner ear endolymph production. Mutations in CLC-Kb and barttin cause Bartter syndrome. Here, we identified two adjacent residues, F256 and N257, that when mutated hugely alter in Xenopus oocytes CLC-Ka's biphasic response to niflumic acid, a drug belonging to the fenamate class, with F256A being potentiated 37-fold and N257A being potently blocked with a KD~1μM. These residues are localized in the same extracellular I-J loop which harbors a regulatory Ca(2+) binding site. This loop thus can represent an ideal and CLC-K specific target for extracellular ligands able to modulate channel activity. Furthermore, we demonstrated the involvement of the barttin subunit in the NFA potentiation. Indeed the F256A mutation confers onto CLC-K1 a transient potentiation induced by NFA which is found only when CLC-K1/F256A is co-expressed with barttin. Thus, in addition to the role of barttin in targeting and gating, the subunit participates in the pharmacological modulation of CLC-K channels and thus represents a further target for potential drugs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2014.07.021DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331650PMC
November 2014

Targeting kidney CLC-K channels: pharmacological profile in a human cell line versus Xenopus oocytes.

Biochim Biophys Acta 2014 Oct 24;1838(10):2484-91. Epub 2014 May 24.

Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari, Via Orabona 4, 70125 Bari, Italy. Electronic address:

CLC-K chloride channels play a crucial role in kidney physiology and genetic mutations, affecting their function are responsible for severe renal salt loss in humans. Thus, compounds that selectively bind to CLC-Ka and/or CLC-Kb channels and modulate their activity may have a significant therapeutic potential. Here, we compare the biophysical and pharmacological behaviors of human CLC-K channels expressed either in HEK293 cells or in Xenopus oocytes and we show that CLC-K channel properties are greatly influenced by the biochemical environment surrounding the channels. Indeed, in HEK293 cells the potentiating effect of niflumic acid (NFA) on CLC-Ka/barttin and CLC-Kb/barttin channels seems to be absent while the blocking efficacy of niflumic acid and benzofuran derivatives observed in oocytes is preserved. The NFA block does not seem to involve the accessory subunit barttin on CLC-K1 channels. In addition, the sensitivity of CLC-Ks to external Ca(2+) is reduced in HEK293 cells. Based on our findings, we propose that mammalian cell lines are a suitable expression system for the pharmacological profiling of CLC-Ks.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2014.05.017DOI Listing
October 2014

Protein kinase C theta (PKCθ) modulates the ClC-1 chloride channel activity and skeletal muscle phenotype: a biophysical and gene expression study in mouse models lacking the PKCθ.

Pflugers Arch 2014 Dec 20;466(12):2215-28. Epub 2014 Mar 20.

Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, 70125, Bari, Italy.

In skeletal muscle, the resting chloride conductance (gCl), due to the ClC-1 chloride channel, controls the sarcolemma electrical stability. Indeed, loss-of-function mutations in ClC-1 gene are responsible of myotonia congenita. The ClC-1 channel can be phosphorylated and inactivated by protein kinases C (PKC), but the relative contribution of each PKC isoforms is unknown. Here, we investigated on the role of PKCθ in the regulation of ClC-1 channel expression and activity in fast- and slow-twitch muscles of mouse models lacking PKCθ. Electrophysiological studies showed an increase of gCl in the PKCθ-null mice with respect to wild type. Muscle excitability was reduced accordingly. However, the expression of the ClC-1 channel, evaluated by qRT-PCR, was not modified in PKCθ-null muscles suggesting that PKCθ affects the ClC-1 activity. Pharmacological studies demonstrated that although PKCθ appreciably modulates gCl, other isoforms are still active and concur to this role. The modification of gCl in PKCθ-null muscles has caused adaptation of the expression of phenotype-specific genes, such as calcineurin and myocyte enhancer factor-2, supporting the role of PKCθ also in the settings of muscle phenotype. Importantly, the lack of PKCθ has prevented the aging-related reduction of gCl, suggesting that its modulation may represent a new strategy to contrast the aging process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-014-1495-1DOI Listing
December 2014

Preclinical evaluation of marketed sodium channel blockers in a rat model of myotonia discloses promising antimyotonic drugs.

Exp Neurol 2014 May 5;255:96-102. Epub 2014 Mar 5.

Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari-Aldo Moro, Bari I-70125, Italy.

Although the sodium channel blocker mexiletine is considered the first-line drug in myotonia, some patients experiment adverse effects, while others do not gain any benefit. Other antimyotonic drugs are thus needed to offer mexiletine alternatives. In the present study, we used a previously-validated rat model of myotonia congenita to compare six marketed sodium channel blockers to mexiletine. Myotonia was induced in the rat by injection of anthracen-9-carboxylic acid, a muscle chloride channel blocker. The drugs were given orally and myotonia was evaluated by measuring the time of righting reflex. The drugs were also tested on sodium currents recorded in a cell line transfected with the human skeletal muscle sodium channel hNav1.4 using patch-clamp technique. In vivo, carbamazepine and propafenone showed antimyotonic activity at doses similar to mexiletine (ED50 close to 5mg/kg); flecainide and orphenadrine showed greater potency (ED50 near 1mg/kg); lubeluzole and riluzole were the more potent (ED50 near 0.1mg/kg). The antimyotonic activity of drugs in vivo was linearly correlated with their potency in blocking hNav1.4 channels in vitro. Deviation was observed for propafenone and carbamazepine, likely due to pharmacokinetics and multiple targets. The comparison of the antimyotonic dose calculated in rats with the current clinical dose in humans strongly suggests that all the tested drugs may be used safely for the treatment of human myotonia. Considering the limits of mexiletine tolerability and the occurrence of non-responders, this study proposes an arsenal of alternative drugs, which may prove useful to increase the quality of life of individuals suffering from non-dystrophic myotonia. Further clinical trials are warranted to confirm these results.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2014.02.023DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4004800PMC
May 2014

N-aryl-2,6-dimethylbenzamides, a new generation of tocainide analogues as blockers of skeletal muscle voltage-gated sodium channels.

J Med Chem 2014 Mar 7;57(6):2589-600. Epub 2014 Mar 7.

Dipartimento di Farmacia-Scienze del Farmaco, ‡Sezione di Farmacologia, Università degli Studi di Bari "Aldo Moro" , via E. Orabona n. 4, 70126 Bari, Italy.

On the basis of a 3D-QSAR study, a new generation of tocainide analogues were designed and synthesized as voltage-gated skeletal muscle sodium channel blockers. Data obtained by screening new compounds by means of Hille-Campbell Vaseline gap voltage-clamp recordings showed that the elongation of the alkyl chain and the introduction of lipophilic and sterically hindered groups on the amino function enhance both potency and use-dependent block. The results provide additional indications about the structural requirement of pharmacophores for further increasing potency and state-dependent block and allowed us to identify a new tocainide analogue (6f) with a favorable pharmacodynamic profile to be proposed as a valid candidate for studies aimed at evaluating its usefulness in the treatment of myotonias.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm401864bDOI Listing
March 2014

Effects of pleiotrophin overexpression on mouse skeletal muscles in normal loading and in actual and simulated microgravity.

PLoS One 2013 28;8(8):e72028. Epub 2013 Aug 28.

Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy.

Pleiotrophin (PTN) is a widespread cytokine involved in bone formation, neurite outgrowth, and angiogenesis. In skeletal muscle, PTN is upregulated during myogenesis, post-synaptic induction, and regeneration after crushing, but little is known regarding its effects on muscle function. Here, we describe the effects of PTN on the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles in mice over-expressing PTN under the control of a bone promoter. The mice were maintained in normal loading or disuse condition, induced by hindlimb unloading (HU) for 14 days. Effects of exposition to near-zero gravity during a 3-months spaceflight (SF) into the Mice Drawer System are also reported. In normal loading, PTN overexpression had no effect on muscle fiber cross-sectional area, but shifted soleus muscle toward a slower phenotype, as shown by an increased number of oxidative type 1 fibers, and increased gene expression of cytochrome c oxidase subunit IV and citrate synthase. The cytokine increased soleus and EDL capillary-to-fiber ratio. PTN overexpression did not prevent soleus muscle atrophy, slow-to-fast transition, and capillary regression induced by SF and HU. Nevertheless, PTN exerted various effects on sarcolemma ion channel expression/function and resting cytosolic Ca(2+) concentration in soleus and EDL muscles, in normal loading and after HU. In conclusion, the results show very similar effects of HU and SF on mouse soleus muscle, including activation of specific gene programs. The EDL muscle is able to counterbalance this latter, probably by activating compensatory mechanisms. The numerous effects of PTN on muscle gene expression and functional parameters demonstrate the sensitivity of muscle fibers to the cytokine. Although little benefit was found in HU muscle disuse, PTN may emerge useful in various muscle diseases, because it exerts synergetic actions on muscle fibers and vessels, which could enforce oxidative metabolism and ameliorate muscle performance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0072028PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3756024PMC
May 2014

Functional characterization of ClC-1 mutations from patients affected by recessive myotonia congenita presenting with different clinical phenotypes.

Exp Neurol 2013 Oct 8;248:530-40. Epub 2013 Aug 8.

Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari-Aldo Moro, Bari, Italy. Electronic address:

Myotonia congenita (MC) is caused by loss-of-function mutations of the muscle ClC-1 chloride channel. Clinical manifestations include the variable association of myotonia and transitory weakness. We recently described a cohort of recessive MC patients showing, at a low rate repetitive nerves stimulation protocol, different values of compound muscle action potential (CMAP) transitory depression, which is considered the neurophysiologic counterpart of transitory weakness. From among this cohort, we studied the chloride currents generated by G190S (associated with pronounced transitory depression), F167L (little or no transitory depression), and A531V (variable transitory depression) hClC-1 mutants in transfected HEK293 cells using patch-clamp. While F167L had no effect on chloride currents, G190S dramatically shifts the voltage dependence of channel activation and A531V reduces channel expression. Such variability in molecular mechanisms observed in the hClC-1 mutants may help to explain the different clinical and neurophysiologic manifestations of each ClCN1 mutation. In addition we examined five different mutations found in compound heterozygosis with F167L, including the novel P558S, and we identified additional molecular defects. Finally, the G190S mutation appeared to impair acetazolamide effects on chloride currents in vitro.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2013.07.018DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781327PMC
October 2013

Emerging role of calcium-activated potassium channel in the regulation of cell viability following potassium ions challenge in HEK293 cells and pharmacological modulation.

PLoS One 2013 16;8(7):e69551. Epub 2013 Jul 16.

Department of Pharmacy-Drug-Science, University of Bari, Bari, Italy.

Emerging evidences suggest that Ca(2+)activated-K(+)-(BK) channel is involved in the regulation of cell viability. The changes of the cell viability observed under hyperkalemia (15 mEq/L) or hypokalemia (0.55 mEq/L) conditions were investigated in HEK293 cells expressing the hslo subunit (hslo-HEK293) in the presence or absence of BK channel modulators. The BK channel openers(10(-11)-10(-3)M) were: acetazolamide(ACTZ), Dichlorphenamide(DCP), methazolamide(MTZ), bendroflumethiazide(BFT), ethoxzolamide(ETX), hydrochlorthiazide(HCT), quercetin(QUERC), resveratrol(RESV) and NS1619; and the BK channel blockers(2 x 10(-7)M-5 x 10(-3)M) were: tetraethylammonium(TEA), iberiotoxin(IbTx) and charybdotoxin(ChTX). Experiments on cell viability and channel currents were performed using cell counting kit-8 and patch-clamp techniques, respectively. Hslo whole-cell current was potentiated by BK channel openers with different potency and efficacy in hslo-HEK293. The efficacy ranking of the openers at -60 mV(Vm) was BFT> ACTZ >DCP ≥RESV≥ ETX> NS1619> MTZ≥ QUERC; HCT was not effective. Cell viability after 24 h of incubation under hyperkalemia was enhanced by 82+6% and 33+7% in hslo-HEK293 cells and HEK293 cells, respectively. IbTx, ChTX and TEA enhanced cell viability in hslo-HEK293. BK openers prevented the enhancement of the cell viability induced by hyperkalemia or IbTx in hslo-HEK293 showing an efficacy which was comparable with that observed as BK openers. BK channel modulators failed to affect cell currents and viability under hyperkalemia conditions in the absence of hslo subunit. In contrast, under hypokalemia cell viability was reduced by -22+4% and -23+6% in hslo-HEK293 and HEK293 cells, respectively; the BK channel modulators failed to affect this parameter in these cells. In conclusion, BK channel regulates cell viability under hyperkalemia but not hypokalemia conditions. BFT and ACTZ were the most potent drugs either in activating the BK current and in preventing the cell proliferation induced by hyperkalemia. These findings may have relevance in disorders associated with abnormal K(+) ion homeostasis including periodic paralysis and myotonia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069551PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712936PMC
February 2014

Growth hormone secretagogues exert differential effects on skeletal muscle calcium homeostasis in male rats depending on the peptidyl/nonpeptidyl structure.

Endocrinology 2013 Oct 8;154(10):3764-75. Epub 2013 Jul 8.

Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Via Orabona, 4, Campus, I-70125 Bari, Italy.

The orexigenic and anabolic effects induced by ghrelin and the synthetic GH secretagogues (GHSs) are thought to positively contribute to therapeutic approaches and the adjunct treatment of a number of diseases associated with muscle wasting such as cachexia and sarcopenia. However, many questions about the potential utility and safety of GHSs in both therapy and skeletal muscle function remain unanswered. By using fura-2 cytofluorimetric technique, we determined the acute effects of ghrelin, as well as of peptidyl and nonpeptidyl synthetic GHSs on calcium homeostasis, a critical biomarker of muscle function, in isolated tendon-to-tendon male rat skeletal muscle fibers. The synthetic nonpeptidyl GHSs, but not peptidyl ghrelin and hexarelin, were able to significantly increase resting cytosolic calcium [Ca²⁺]i. The nonpeptidyl GHS-induced [Ca²⁺]i increase was independent of GHS-receptor 1a but was antagonized by both thapsigargin/caffeine and cyclosporine A, indicating the involvement of the sarcoplasmic reticulum and mitochondria. Evaluation of the effects of a pseudopeptidyl GHS and a nonpeptidyl antagonist of the GHS-receptor 1a together with a drug-modeling study suggest the conclusion that the lipophilic nonpeptidyl structure of the tested compounds is the key chemical feature crucial for the GHS-induced calcium alterations in the skeletal muscle. Thus, synthetic GHSs can have different effects on skeletal muscle fibers depending on their molecular structures. The calcium homeostasis dysregulation specifically induced by the nonpeptidyl GHSs used in this study could potentially counteract the beneficial effects associated with these drugs in the treatment of muscle wasting of cachexia- or other age-related disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2013-1334DOI Listing
October 2013

Paracrine effects of IGF-1 overexpression on the functional decline due to skeletal muscle disuse: molecular and functional evaluation in hindlimb unloaded MLC/mIgf-1 transgenic mice.

PLoS One 2014 3;8(6):e65167. Epub 2013 Jun 3.

Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy.

Slow-twitch muscles, devoted to postural maintenance, experience atrophy and weakness during muscle disuse due to bed-rest, aging or spaceflight. These conditions impair motion activities and can have survival implications. Human and animal studies demonstrate the anabolic role of IGF-1 on skeletal muscle suggesting its interest as a muscle disuse countermeasure. Thus, we tested the role of IGF-1 overexpression on skeletal muscle alteration due to hindlimb unloading (HU) by using MLC/mIgf-1 transgenic mice expressing IGF-1 under the transcriptional control of MLC promoter, selectively activated in skeletal muscle. HU produced atrophy in soleus muscle, in terms of muscle weight and fiber cross-sectional area (CSA) reduction, and up-regulation of atrophy gene MuRF1. In parallel, the disuse-induced slow-to-fast fiber transition was confirmed by an increase of the fast-type of the Myosin Heavy Chain (MHC), a decrease of PGC-1α expression and an increase of histone deacetylase-5 (HDAC5). Consistently, functional parameters such as the resting chloride conductance (gCl) together with ClC-1 chloride channel expression were increased and the contractile parameters were modified in soleus muscle of HU mice. Surprisingly, IGF-1 overexpression in HU mice was unable to counteract the loss of muscle weight and the decrease of fiber CSA. However, the expression of MuRF1 was recovered, suggesting early effects on muscle atrophy. Although the expression of PGC-1α and MHC were not improved in IGF-1-HU mice, the expression of HDAC5 was recovered. Importantly, the HU-induced increase of gCl was fully contrasted in IGF-1 transgenic mice, as well as the changes in contractile parameters. These results indicate that, even if local expression does not seem to attenuate HU-induced atrophy and slow-to-fast phenotype transition, it exerts early molecular effects on gene expression which can counteract the HU-induced modification of electrical and contractile properties. MuRF1 and HDAC5 can be attractive therapeutic targets for pharmacological countermeasures and then deserve further investigations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0065167PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670938PMC
January 2015

An olive oil-derived antioxidant mixture ameliorates the age-related decline of skeletal muscle function.

Age (Dordr) 2014 Feb 30;36(1):73-88. Epub 2013 May 30.

Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4-campus, 70125, Bari, Italy,

Age-related skeletal muscle decline is characterized by the modification of sarcolemma ion channels important to sustain fiber excitability and to prevent metabolic dysfunction. Also, calcium homeostasis and contractile function are impaired. In the aim to understand whether these modifications are related to oxidative damage and can be reverted by antioxidant treatment, we examined the effects of in vivo treatment with an waste water polyphenolic mixture (LACHI MIX HT) supplied by LACHIFARMA S.r.l. Italy containing hydroxytirosol (HT), gallic acid, and homovanillic acid on the skeletal muscles of 27-month-old rats. After 6-week treatment, we found an improvement of chloride ClC-1 channel conductance, pivotal for membrane electrical stability, and of ATP-dependent potassium channel activity, important in coupling excitability with fiber metabolism. Both of them were analyzed using electrophysiological techniques. The treatment also restored the resting cytosolic calcium concentration, the sarcoplasmic reticulum calcium release, and the mechanical threshold for contraction, an index of excitation-contraction coupling mechanism. Muscle weight and blood creatine kinase levels were preserved in LACHI MIX HT-treated aged rats. The antioxidant activity of LACHI MIX HT was confirmed by the reduction of malondialdehyde levels in the brain of the LACHI MIX HT-treated aged rats. In comparison, the administration of purified HT was less effective on all the parameters studied. Although muscle function was not completely recovered, the present study provides evidence of the beneficial effects of LACHI MIX HT, a natural compound, to ameliorate skeletal muscle functional decline due to aging-associated oxidative stress.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11357-013-9544-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3889891PMC
February 2014

Major channels involved in neuropsychiatric disorders and therapeutic perspectives.

Front Genet 2013 7;4:76. Epub 2013 May 7.

Section of Pharmacology, Department of Pharmacy - Drug Science, University of Bari Bari, Italy.

Voltage-gated ion channels are important mediators of physiological functions in the central nervous system. The cyclic activation of these channels influences neurotransmitter release, neuron excitability, gene transcription, and plasticity, providing distinct brain areas with unique physiological and pharmacological response. A growing body of data has implicated ion channels in the susceptibility or pathogenesis of psychiatric diseases. Indeed, population studies support the association of polymorphisms in calcium and potassium channels with the genetic risk for bipolar disorders (BPDs) or schizophrenia. Moreover, point mutations in calcium, sodium, and potassium channel genes have been identified in some childhood developmental disorders. Finally, antibodies against potassium channel complexes occur in a series of autoimmune psychiatric diseases. Here we report recent studies assessing the role of calcium, sodium, and potassium channels in BPD, schizophrenia, and autism spectrum disorders, and briefly summarize promising pharmacological strategies targeted on ion channels for the therapy of mental illness and related genetic tests.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fgene.2013.00076DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646240PMC
May 2013

Combined modifications of mexiletine pharmacophores for new lead blockers of Na(v)1.4 channels.

Biophys J 2013 Jan;104(2):344-54

Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari, Aldo Moro, Italy.

Previously identified potent and/or use-dependent mexiletine (Mex) analogs were used as template for the rational design of new Na(v)-channel blockers. The effects of the novel analogs were tested on sodium currents of native myofibers. Data and molecular modeling show that increasing basicity and optimal alkyl chain length enhance use-dependent block. This was demonstrated by replacing the amino group with a more basic guanidine one while maintaining a proper distance between positive charge and aromatic ring (Me13) or with homologs having the chirality center nearby the amino group or the aromatic ring. Accordingly, a phenyl group on the asymmetric center in the homologated alkyl chain (Me12), leads to a further increase of use-dependent behavior versus the phenyl Mex derivative Me4. A fluorine atom in paraposition and one ortho-methyl group on the xylyloxy ring (Me15) increase potency and stereoselectivity versus Me4. Charge delocalization and greater flexibility of Me15 may increase its affinity for Tyr residues influencing steric drug interaction with the primary Phe residue of the binding site. Me12 and Me15 show limited selectivity against Na(v)-isoforms, possibly due to the highly conserved binding site on Na(v). To our knowledge, the new compounds are the most potent Mex-like Na(v) blockers obtained to date and deserve further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpj.2012.11.3830DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552273PMC
January 2013

Molecular dissection of lubeluzole use-dependent block of voltage-gated sodium channels discloses new therapeutic potentials.

Mol Pharmacol 2013 Feb 21;83(2):406-15. Epub 2012 Nov 21.

Section of Pharmacology, Department of Pharmacy, University of Bari-Aldo Moro, Bari, Italy.

Lubeluzole, which acts on various targets in vitro, including voltage-gated sodium channels, was initially proposed as a neuroprotectant. The lubeluzole structure contains a benzothiazole moiety [N-methyl-1,3-benzothiazole-2-amine (R-like)] related to riluzole and a phenoxy-propranol-amine moiety [(RS)-1-(3,4-difluorophenoxy)-3-(piperidin-1-yl)propan-2-ol (A-core)] recalling propranolol. Both riluzole and propranolol are efficient sodium channel blockers. We studied in detail the effects of lubeluzole (racemic mixture and single isomers), the aforementioned lubeluzole moieties, and riluzole on sodium channels to increase our knowledge of drug-channel molecular interactions. Compounds were tested on hNav1.4 sodium channels, and on F1586C or Y1593C mutants functionally expressed in human embryonic kidney 293 cells, using the patch-clamp technique. Lubeluzole blocked sodium channels with a remarkable effectiveness. No stereoselectivity was found. Compared with mexiletine, the dissociation constant for inactivated channels was ~600 times lower (~11 nM), conferring to lubeluzole a huge use-dependence of great therapeutic value. The F1586C mutation only partially impaired the use-dependent block, suggesting that additional amino acids are critically involved in high-affinity binding. Lubeluzole moieties were modest sodium channel blockers. Riluzole blocked sodium channels efficiently but lacked use dependence, similar to R-like. F1586C fully abolished A-core use dependence, suggesting that A-core binds to the local anesthetic receptor. Thus, lubeluzole likely binds to the local anesthetic receptor through its phenoxy-propranol-amine moiety, with consequent use-dependent behavior. Nevertheless, compared with other known sodium channel blockers, lubeluzole adds a third pharmacophoric point through its benzothiazole moiety, which greatly enhances high-affinity binding and use-dependent block. If sufficient isoform specificity can be attained, the huge use-dependent block may help in the development of new sodium channel inhibitors to provide pharmacotherapy for membrane excitability disorders, such as myotonia, epilepsy, or chronic pain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.112.080804DOI Listing
February 2013