Publications by authors named "Denis Buttard"

6 Publications

  • Page 1 of 1

Nanowire forest of pnictogen-chalcogenide alloys for thermoelectricity.

Nanoscale 2019 Jul;11(28):13423-13430

Institut Néel, CNRS, 25 avenue des Martyrs, F-38042 Grenoble, France. and Univ. Grenoble Alpes, Grenoble, France.

Pnictogen and chalcogenide compounds have been seen as high-potential materials for efficient thermoelectric conversion over the past few decades. It is also known that with nanostructuration, the physical properties of these pnictogen-chalcogenide compounds can be further enhanced towards a more efficient heat conversion. Here, we report the reduced thermal conductivity of a large ensemble of Bi2Te3 alloy nanowires (70 nm in diameter) with selenium for n-type and antimony for p-type (Bi2Te3-ySey and Bi2-xSbxTe3 respectively). The nanowire growth was carried out through electrodeposition in nanoporous aluminium oxide templates with high aspect ratios leading to a forest (109 per centimetre square) of nearly identical nanowires. The temperature dependence of thermal conductivity for the nanowire ensembles was acquired through a highly sensitive 3ω measurement technique. The change in the thermal conductivity of nanowires is largely affected by the roughness in addition to the size effect due to enhanced boundary scattering. The major factor that influences the thermal conductivity was found to be the ratio of the rms roughness to the correlation length of the nanowire. With a high Seebeck coefficient and electrical conductivity at room temperature, the overall thermoelectric figure of merit ZT allows the consideration of such forests of nanowires as efficient potential building blocks of future TE devices.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr01566cDOI Listing
July 2019

Measurement of anisotropic thermal conductivity of a dense forest of nanowires using the 3 method.

Rev Sci Instrum 2018 Aug;89(8):084902

Institut Néel, CNRS, 38000 Grenoble, France.

The 3 method is a dynamic measurement technique developed for determining the thermal conductivity of thin films or semi-infinite bulk materials. A simplified model is often applied to deduce the thermal conductivity from the slope of the real part of the ac temperature amplitude as a function of the logarithm of frequency, which in-turn brings a limitation on the kind of samples under observation. In this work, we have measured the thermal conductivity of a forest of nanowires embedded in nanoporous alumina membranes using the 3 method. An analytical solution of 2D heat conduction is then used to model the multilayer system, considering the anisotropic thermal properties of the different layers, substrate thermal conductivity, and their thicknesses. Data treatment is performed by fitting the experimental results with the 2D model on two different sets of nanowires (silicon and BiSbTe) embedded in the matrix of nanoporous alumina templates, having thermal conductivities that differ by at least one order of magnitude. These experimental results show that this method extends the applicability of the 3 technique to more complex systems having anisotropic thermal properties.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5025319DOI Listing
August 2018

Tailoring Strain and Morphology of Core-Shell SiGe Nanowires by Low-Temperature Ge Condensation.

Nano Lett 2017 12 14;17(12):7299-7305. Epub 2017 Nov 14.

Aix-Marseille Université - CNRS, IM2NP, Faculté des Sciences de Jérôme , F-13397 Marseille France.

Selective oxidation of the silicon element of silicon germanium (SiGe) alloys during thermal oxidation is a very important and technologically relevant mechanism used to fabricate a variety of microelectronic devices. We develop here a simple integrative approach involving vapor-liquid-solid (VLS) growth followed by selective oxidation steps to the construction of core-shell nanowires and higher-level ordered systems with scalable configurations. We examine the selective oxidation/condensation process under nonequilibrium conditions that gives rise to spontaneous formation of core-shell structures by germanium condensation. We contrast this strategy that uses reaction-diffusion-segregation mechanisms to produce coherently strained structures with highly configurable geometry and abrupt interfaces with growth-based processes which lead to low strained systems with nonuniform composition, three-dimensional morphology, and broad core-shell interface. We specially focus on SiGe core-shell nanowires and demonstrate that they can have up to 70% Ge-rich shell and 2% homogeneous strain with core diameter as small as 14 nm. Key elements of the building process associated with this approach are identified with regard to existing theoretical models. Moreover, starting from results of ab initio calculations, we discuss the electronic structure of these novel nanostructures as well as their wide potential for advanced device applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.7b02832DOI Listing
December 2017

Sub-10 nm Silicon Nanopillar Fabrication Using Fast and Brushless Thermal Assembly of PS-b-PDMS Diblock Copolymer.

ACS Appl Mater Interfaces 2016 Apr 5;8(15):9954-60. Epub 2016 Apr 5.

Université Grenoble Alpes , F-38000 Grenoble, France.

A new approach to obtaining spherical nanodomains using polystyrene-block-polydimethylsiloxane (PS-b-PDMS) is proposed. To reduce drastically the process time, we blended a copolymer with cylindrical morphology with a PS homopolymer. Adding PS homopolymer into a low-molar-mass cylindrical morphology PS-b-PDMS system drives it toward a spherical morphology. Besides, by controlling the as-spun state, spherical PDMS nanodomains could be kept and thermally arranged. This PS-homopolymer addition allows not only an efficient, purely thermal arrangement process of spheres but also the ability to work directly on nontreated silicon substrates. Indeed, as shown by STEM measurements, no PS brush surface treatment was necessary in our study to avoid a PDMS wetting layer at the interface with the Si substrate. Our approach was compared to a sphere-forming diblock copolymer, which needs a longer thermal annealing. Furthermore, GISAXS measurements provided complete information on PDMS sphere features. Excellent long-range order spherical microdomains were therefore produced on flat surfaces and inside graphoepitaxy trenches with a period of 21 nm, as were in-plane spheres with a diameter of 8 nm with a 15 min thermal annealing. Finally, direct plasma-etching transfer into the silicon substrate was demonstrated, and 20 nm high silicon nanopillars were obtained, which are very promising results for various nanopatterning applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b01255DOI Listing
April 2016

Highly organised and dense vertical silicon nanowire arrays grown in porous alumina template on <100> silicon wafers.

Nanoscale Res Lett 2013 Jun 17;8(1):287. Epub 2013 Jun 17.

CNRS/UJF-Grenoble1/CEA LTM, 17 rue des Martyrs, Grenoble 38054, France.

In this work, nanoimprint lithography combined with standard anodization etching is used to make perfectly organised triangular arrays of vertical cylindrical alumina nanopores onto standard <100>-oriented silicon wafers. Both the pore diameter and the period of alumina porous array are well controlled and can be tuned: the periods vary from 80 to 460 nm, and the diameters vary from 15 nm to any required diameter. These porous thin layers are then successfully used as templates for the guided epitaxial growth of organised mono-crystalline silicon nanowire arrays in a chemical vapour deposition chamber. We report the densities of silicon nanowires up to 9 × 109 cm-2 organised in highly regular arrays with excellent diameter distribution. All process steps are demonstrated on surfaces up to 2 × 2 cm2. Specific emphasis was made to select techniques compatible with microelectronic fabrication standards, adaptable to large surface samples and with a reasonable cost. Achievements made in the quality of the porous alumina array, therefore on the silicon nanowire array, widen the number of potential applications for this technology, such as optical detectors or biological sensors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1556-276X-8-287DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3686656PMC
June 2013

Ultradense and planarized antireflective vertical silicon nanowire array using a bottom-up technique.

Nanoscale Res Lett 2013 Mar 9;8(1):123. Epub 2013 Mar 9.

SiNaPS Laboratory SP2M, UMR-E CEA/UJF-Grenoble 1, CEA/INAC, 17 Avenue des Martyrs, Grenoble 38054, France.

The production and characterization of ultradense, planarized, and organized silicon nanowire arrays with good crystalline and optical properties are reported. First, alumina templates are used to grow silicon nanowires whose height, diameter, and density are easily controlled by adjusting the structural parameters of the template. Then, post-processing using standard microelectronic techniques enables the production of high-density silicon nanowire matrices featuring a remarkably flat overall surface. Different geometries are then possible for various applications. Structural analysis using synchrotron X-ray diffraction reveals the good crystallinity of the nanowires and their long-range periodicity resulting from their high-density organization. Transmission electron microscopy also shows that the nanowires can grow on nonpreferential substrate, enabling the use of this technique with universal substrates. The good geometry control of the array also results in a strong optical absorption which is interesting for their use in nanowire-based optical sensors or similar devices.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1556-276X-8-123DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599999PMC
March 2013
-->