Publications by authors named "Deborah D Jaworski"

2 Publications

  • Page 1 of 1

Discovery of a novel and potent class of FabI-directed antibacterial agents.

Antimicrob Agents Chemother 2002 10;46(10):3118-24

Microbial, Musculoskeletal and Proliferative Diseases Center of Excellence in Drug Discovery, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania 19426, USA.

Bacterial enoyl-acyl carrier protein (ACP) reductase (FabI) catalyzes the final step in each elongation cycle of bacterial fatty acid biosynthesis and is an attractive target for the development of new antibacterial agents. High-throughput screening of the Staphylococcus aureus FabI enzyme identified a novel, weak inhibitor with no detectable antibacterial activity against S. aureus. Iterative medicinal chemistry and X-ray crystal structure-based design led to the identification of compound 4 [(E)-N-methyl-N-(2-methyl-1H-indol-3-ylmethyl)-3-(7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)acrylamide], which is 350-fold more potent than the original lead compound obtained by high-throughput screening in the FabI inhibition assay. Compound 4 has exquisite antistaphylococci activity, achieving MICs at which 90% of isolates are inhibited more than 500 times lower than those of nine currently available antibiotics against a panel of multidrug-resistant strains of S. aureus and Staphylococcus epidermidis. Furthermore, compound 4 exhibits excellent in vivo efficacy in an S. aureus infection model in rats. Biochemical and genetic approaches have confirmed that the mode of antibacterial action of compound 4 and related compounds is via inhibition of FabI. Compound 4 also exhibits weak FabK inhibitory activity, which may explain its antibacterial activity against Streptococcus pneumoniae and Enterococcus faecalis, which depend on FabK and both FabK and FabI, respectively, for their enoyl-ACP reductase function. These results show that compound 4 is representative of a new, totally synthetic series of antibacterial agents that has the potential to provide novel alternatives for the treatment of S. aureus infections that are resistant to our present armory of antibiotics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC128775PMC
http://dx.doi.org/10.1128/aac.46.10.3118-3124.2002DOI Listing
October 2002

Nanomolar inhibitors of Staphylococcus aureus methionyl tRNA synthetase with potent antibacterial activity against gram-positive pathogens.

J Med Chem 2002 May;45(10):1959-62

Potent nanomolar inhibitors of Staphylococcus aureus methionyl tRNA synthetase have been derived from a file compound high throughput screening hit. Optimized compounds show excellent antibacterial activity against staphylococcal and enterococcal pathogens, including strains resistant to clinical antibiotics. Compound 11 demonstrated in vivo efficacy in an S. aureus rat abscess infection model.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm025502xDOI Listing
May 2002