Publications by authors named "Dawn Dufield"

16 Publications

  • Page 1 of 1

Recommendations for the content and management of Certificates of Analysis for reference standards from the GCC for bioanalysis.

Bioanalysis 2021 Apr 13. Epub 2021 Apr 13.

CRMedicon, Piscataway, NJ, USA.

The 13th Global CRO Council (GCC) closed forum for bioanalysis was held in New Orleans, LA, USA on 5 April 2019. This GCC meeting was organized to discuss the contents of the 2019 ICH M10 Bioanalytical Method Validation Draft Guideline published in February 2019 and consolidate the feedback of the GCC members. While ICH M10 will cover requirements for reference standards, one of the biggest challenges facing the CRO community is the lack of consistency and completeness of Certificates of Analysis for reference standards used in regulated bioanalysis. Similar challenges exist with critical reagents (e.g., capture and detection antibodies) used for assays supporting biologics. The recommendations provided in this publication are the minimum requirements for the content that GCC members believe should be included in Certificates of Analysis for reference standards obtained from commercial vendors, sponsors and compendial suppliers, for use in regulated bioanalytical studies. In addition, recommendations for internal standards, metabolites and critical reagents are discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4155/bio-2021-0046DOI Listing
April 2021

GCC Consolidated Feedback to ICH on the 2019 ICH M10 Bioanalytical Method Validation Draft Guideline.

Bioanalysis 2019 Sep 30;11(18s):1-228. Epub 2019 Sep 30.

WuXi Apptec, Shanghai, China.

The 13 GCC Closed Forum for Bioanalysis was held in New Orleans, Louisiana, USA on April 5, 2019. This GCC meeting was organized to discuss the contents of the 2019 ICH M10 Bioanalytical Method Validation Draft Guideline published in February 2019 and consolidate the feedback of the GCC members. In attendance were 63 senior-level participants from eight countries representing 44 bioanalytical CRO companies/sites. This event represented a unique opportunity for CRO bioanalytical experts to share their opinions and concerns regarding the ICH M10 Bioanalytical Method Validation Draft Guideline and to build unified comments to be provided to the ICH.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4155/bio-2019-0207DOI Listing
September 2019

Translational Pharmacokinetic/Pharmacodynamic Characterization and Target-Mediated Drug Disposition Modeling of an Anti-Tissue Factor Pathway Inhibitor Antibody, PF-06741086.

J Pharm Sci 2018 07 20;107(7):1995-2004. Epub 2018 Mar 20.

Pfizer Biomedicine Design, Cambridge, Massachusetts 02139.

Tissue factor pathway inhibitor (TFPI) exhibits multiple isoforms, which are known to present in multiple locations such as plasma, endothelium, and platelets. TFPI is an endogenous negative modulator of the coagulation pathway, and therefore, neutralization of TFPI function can potentially increase coagulation activity. A human monoclonal antibody, PF-06741086, which interacts with all isoforms of TFPI is currently being tested in clinic for treating hemophilia patients with and without inhibitors. To support clinical development of PF-06741086, pharmacokinetics (PK) and pharmacodynamics of PF-06741086 were characterized in monkeys. In addition, a mechanistic model approach was used to estimate PK parameters in monkeys and simulate PK profiles in human. The results show that PF-06741086 exhibited target-mediated drug disposition and had specific effects on various hemostatic markers including diluted prothrombin time, thrombin generation, and thrombin-antithrombin complex in monkeys after administration. The model-predicted and observed human exposures were compared retrospectively, and the result indicates that the exposure prediction was reasonable within less than 2-fold deviation. This study demonstrated in vivo efficacy of PF-06741086 in monkeys and the utility of a rational mechanistic approach to describe PK for a monoclonal antibody with complex target binding.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2018.03.010DOI Listing
July 2018

2014 White Paper on recent issues in bioanalysis: a full immersion in bioanalysis (Part 2 - hybrid LBA/LCMS, ELN & regulatory agencies' input).

Bioanalysis 2014 ;6(23):3237-49

Pfizer, Andover, MA, USA.

The 2014 8th Workshop on Recent Issues in Bioanalysis (8th WRIB), a 5-day full immersion in the evolving field of bioanalysis, took place in Universal City, California, USA. Close to 500 professionals from pharmaceutical and biopharmaceutical companies, contract research organizations and regulatory agencies worldwide convened to share, review, discuss and agree on approaches to address current issues of interest in bioanalysis. The topics covered included both small and large molecules, and involved LCMS, hybrid LBA/LCMS, LBA approaches and immunogenicity. From the prolific discussions held during the workshop, specific recommendations are presented in this 2014 White Paper. As with the previous years' editions, this paper acts as a practical tool to help the bioanalytical community continue advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2014 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations for Hybrid LBA/LCMS, Electronic Laboratory Notebook and Regulatory Agencies' Input. Part 1 (Small molecules bioanalysis using LCMS) was published in the Bioanalysis issue 6(22) and Part 3 (Large molecules bioanalysis using LBA and Immunogenicity) will be published in the Bioanalysis issue 6(24).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4155/bio.14.279DOI Listing
August 2015

Recommendations for validation of LC-MS/MS bioanalytical methods for protein biotherapeutics.

AAPS J 2015 Jan 13;17(1):1-16. Epub 2014 Nov 13.

Chromatographic Sciences, PPD Bioanalytical Laboratories, 2244 Dabney Road, Richmond, Virginia, 23230, USA.

This paper represents the consensus views of a cross-section of companies and organizations from the USA and Canada regarding the validation and application of liquid chromatography tandem mass spectrometry (LC-MS/MS) methods for bioanalysis of protein biotherapeutics in regulated studies. It was prepared under the auspices of the AAPS Bioanalytical Focus Group's Protein LC-MS Bioanalysis Subteam and is intended to serve as a guide to drive harmonization of best practices within the bioanalytical community and provide regulators with an overview of current industry thinking on applying LC-MS/MS technology for protein bioanalysis. For simplicity, the scope was limited to the most common current approach in which the protein is indirectly quantified using LC-MS/MS measurement of one or more of its surrogate peptide(s) produced by proteolytic digestion. Within this context, we considered a range of sample preparation approaches from simple in-matrix protein denaturation and digestion to complex procedures involving affinity capture enrichment. Consideration was given to the method validation experiments normally associated with traditional LC-MS/MS and ligand-binding assays. Our collective experience, thus far, is that LC-MS/MS methods for protein bioanalysis require different development and validation considerations than those used for small molecules. The method development and validation plans need to be tailored to the particular assay format being established, taking into account a number of important factors: the intended use of the assay, the test species or study population, the characteristics of the protein biotherapeutic and its similarity to endogenous proteins, potential interferences, as well as the nature, quality, and availability of reference and internal standard materials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1208/s12248-014-9685-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287296PMC
January 2015

Minimalistic sample preparation strategies for LC-MS quantification of large molecule biopharmaceuticals: a case study highlighting alpha-1 antitrypsin protein.

Bioanalysis 2014 ;6(13):1813-25

Biomarker, Biomeasure & Mass Spectrometry Group, Pfizer Worldwide Research and Development, Andover, MA, USA.

Background: Large molecule biotherapeutics pose a distinctive bioanalytical challenge for LC-MS assay development, particularly when optimizing sample enrichment steps. Alpha-1 antitrypsin (AAT) is used as an example for highlighting large-molecule assay-development strategies.

Results: Two sensitive and selective LC-MS/MS-based quantification assays were developed. Fit-for-purpose assay qualifications for BAL and serum matrices were performed by assessing sensitivity, precision and accuracy, dilution linearity and interferences.

Conclusion: Our approach to sample preparation focuses on optimizing the simplest methodology necessary to generate fit-for-purpose bioanalytical assays. To measure AAT protein levels in preclinical species with selectivity and increased assay sensitivity, a minimalistic sample preparation strategy was adopted that included either traditional direct digestion or a more complicated immunoprecipitation enrichment process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4155/bio.14.146DOI Listing
July 2015

2013 White Paper on recent issues in bioanalysis: 'hybrid'--the best of LBA and LCMS.

Bioanalysis 2013 Dec 10;5(23):2903-18. Epub 2013 Oct 10.

Biogen Idec Inc.,Cambridge, MA, USA.

The 2013 7th Workshop on Recent Issues in Bioanalysis was held in Long Beach, California, USA, where close to 500 professionals from pharmaceutical and biopharmaceutical companies, CROs and regulatory agencies convened to discuss current topics of interest in bioanalysis. These 'hot' topics, which covered both small and large molecules, were the starting point for fruitful exchanges of knowledge, and sharing of ideas among speakers, panelists and attendees. The discussions led to specific recommendations pertinent to bioanalytical science. Such as the previous editions, this 2013 White Paper addresses important bioanalytical issues and provides practical answers to the topics presented, discussed and agreed upon by the global bioanalytical community attending the 7th Workshop on Recent Issues in Bioanalysis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4155/bio.13.238DOI Listing
December 2013

Leukotrienes, but not angiotensin II, are involved in the renal effects elicited by the prolonged cyclooxygenase-2 inhibition when sodium intake is low.

J Cardiovasc Pharmacol 2013 Apr;61(4):329-36

Department of Physiology, School of Medicine, University of Murcia, Murcia, Spain.

It is known that cyclooxygenase-2 (COX-2) inhibition elicits significant renal hemodynamics alterations when sodium intake is low. However, the mechanisms involved in these renal changes are not well known. Our objective was to evaluate the role of angiotensin II and 5-lipooxygenase-derived metabolites in the renal effects induced by prolonged COX-2 inhibition when sodium intake is low. Conscious dogs were treated during 7 days with a COX-2 inhibitor (1 mg·kg·d, SC75416), and either a vehicle, an AT1 receptor antagonist (0.4 mg · kg · d, candesartan) or a selective 5-lipooxygenase inhibitor (PF-150, 20 and 60 mg · kg · d). The administration of SC75416 alone induced significant changes in renal blood flow (219 ± 14 to 160 ± 10 mL/min), glomerular filtration rate (51 ± 2 to 42 ± 3 mL/min), and plasma potassium (pK) (4.3 ± 0.1 to 4.6 ± 0.1 mEq/L). Similar decrements in renal blood flow (27%) and glomerular filtration rate (20%) and a similar increment in pK (7%) were found when SC75416 was administered in candesartan-pretreated dogs. However, SC75416 administration did not elicit significant changes in renal hemodynamics and pK in dogs pretreated with each dose of PF-150. Our data suggest that leukotrienes but not angiotensin II are involved in the renal effects induced by COX-2 inhibition when sodium intake is low.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/FJC.0b013e31828399aeDOI Listing
April 2013

Multiplex transcriptional analysis of paraffin-embedded liver needle biopsy from patients with liver fibrosis.

Fibrogenesis Tissue Repair 2012 Dec 27;5(1):21. Epub 2012 Dec 27.

Pfizer Global Research & Development, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA.

Unlabelled:

Background: The possibility of extracting RNA and measuring RNA expression from paraffin sections can allow extensive investigations on stored paraffin samples obtained from diseased livers and could help with studies of the natural history of liver fibrosis and inflammation, and in particular, correlate basic mechanisms to clinical outcomes.

Results: To address this issue, a pilot study of multiplex gene expression using branched-chain DNA technology was conducted to directly measure mRNA expression in formalin-fixed paraffin-embedded needle biopsy samples of human liver. Twenty-five genes were selected for evaluation based on evidence obtained from human fibrotic liver, a rat BDL model and in vitro cultures of immortalized human hepatic stellate cells. The expression levels of these 25 genes were then correlated with liver fibrosis and inflammation activity scores. Statistical analysis revealed that three genes (COL3A1, KRT18, and TUBB) could separate fibrotic from non-fibrotic samples and that the expression of ten genes (ANXA2, TIMP1, CTGF, COL4A1, KRT18, COL1A1, COL3A1, ACTA2, TGFB1, LOXL2) were positively correlated with the level of liver inflammation activity.

Conclusion: This is the first report describing this multiplex technique for liver fibrosis and has provided the proof of concept of the suitability of RNA extracted from paraffin sections for investigating the modulation of a panel of proinflammatory and profibrogenic genes. This pilot study suggests that this technique will allow extensive investigations on paraffin samples from diseased livers and possibly from any other tissue. Using identical or other genes, this multiplex expression technique could be applied to samples obtained from extensive patient cohorts with stored paraffin samples in order to correlate gene expression with valuable clinically relevant information. This method could be used to provide a better understanding of the mechanisms of liver fibrosis and inflammation, its progression, and help development of new therapeutic approaches for this indication.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1755-1536-5-21DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564743PMC
December 2012

Online immunoaffinity LC/MS/MS. A general method to increase sensitivity and specificity: How do you do it and what do you need?

Methods 2012 Feb 22;56(2):236-45. Epub 2011 Aug 22.

Pfizer Global Research & Development, 1 Burtt Rd., Andover, MA 01810, USA.

There is an increased emphasis on hyphenated techniques such as immunoaffinity LC/MS/MS (IA-LC/MS/MS) or IA-LC/MRM. These techniques offer competitive advantages with respect to sensitivity and selectivity over traditional LC/MS and are complementary to ligand binding assays (LBA) or ELISA's. However, these techniques are not entirely straightforward and there are several tips and tricks to routine sample analysis. We describe here our methods and procedures for how to perform online IA-LC/MS/MS including a detailed protocol for the preparation of antibody (Ab) enrichment columns. We have included sample trapping and Ab methods. Furthermore, we highlight tips, tricks, minimal and optimal approaches. This technology has been shown to be viable for several applications, species and fluids from small molecules to proteins and biomarkers to PK assays.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymeth.2011.08.012DOI Listing
February 2012

Geldanamycin-induced PCNA degradation in isolated Hsp90 complex from cancer cells.

Cancer Invest 2010 Jul;28(6):635-41

Pfizer Global Research and Development, 700 Chesterfield Parkway West, St. Louis, MO 63017, USA.

Hsp90 is a molecular chaperone involved in the folding and proteolytic turnover of many regulatory proteins associated with it. Some of the Hsp90 client proteins are known to be involved in tumorigenesis. An Hsp90-specific inhibitor, geldanamycin, is shown to bind to the ATP binding site of the chaperone to induce degradation of many client proteins, and results in antitumor activities. However, the mechanism of geldanamycin-induced client protein degradation is not fully understood. A large-scale immunoaffinity purification with anti-Hsp90 antibodies identified many Hsp90 client proteins from colon cancer cell line, HCT-116. One of the identified proteins, PCNA, was confirmed to be associated with Hsp90 in two additional cancer cell lines. After geldanamycin treatment, both PCNA and Hsp90 were shown to be degraded. More interestingly, this study demonstrated that in two different cancer cell lines, the degradation occurred in the isolated Hsp90 complex in vitro. This result indicated that the components responsible for the PCNA degradation are also associated with Hsp90. This finding provided a new mechanism for the Hsp90-mediated protein degradation induced by Hsp90-specific inhibitors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3109/07357901003630983DOI Listing
July 2010

Pharmacology of PF-4191834, a novel, selective non-redox 5-lipoxygenase inhibitor effective in inflammation and pain.

J Pharmacol Exp Ther 2010 Jul 8;334(1):294-301. Epub 2010 Apr 8.

Inflammation Research Unit, Pfizer Global Research & Development, St. Louis Laboratories, Pfizer Inc., Chesterfield, Missouri, USA.

5-Lipoxygenase (LOX) is an important arachidonic acid-metabolizing enzyme producing leukotrienes and other proinflammatory lipid mediators with potent pathophysiological functions in asthma and other inflammatory diseases. 4-(3-(4-(1-Methyl-1H-pyrazol-5-yl)phenylthio)phenyl)-tetrahydro-2H-pyran-4-carboxamide (PF-4191834) is a novel, selective non-redox 5-lipoxygenase inhibitor effective in inflammation and pain. In vitro and in vivo assays were developed for the evaluation of a novel 5-LOX inhibitor using conditions of maximal enzyme activity. PF-4191834 exhibits good potency in enzyme- and cell-based assays, as well as in a rat model of acute inflammation. Enzyme assay results indicate that PF-4191834 is a potent 5-LOX inhibitor, with an IC(50) = 229 +/- 20 nM. Furthermore, it demonstrated approximately 300-fold selectivity for 5-LOX over 12-LOX and 15-LOX and shows no activity toward the cyclooxygenase enzymes. In addition, PF-4191834 inhibits 5-LOX in human blood cells, with an IC(80) = 370 +/- 20 nM. This inhibitory concentration correlates well with plasma exposures needed for in vivo efficacy in inflammation in models of inflammatory pain. The combination of potency in cells and in vivo, together with a sustained in vivo effect, provides PF-4191834 with an overall pharmacodynamic improvement consistent with once a day dosing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.110.166967DOI Listing
July 2010

Development and validation of an LC-MS/MS method for quantification of cyclic guanosine 3',5'-monophosphate (cGMP) in clinical applications: a comparison with a EIA method.

J Chromatogr B Analyt Technol Biomed Life Sci 2009 Feb 6;877(5-6):513-20. Epub 2009 Jan 6.

Department of Pharmacokinetics, Dynamics & Metabolism, Pfizer Global Research & Development, Groton Laboratories, Eastern Point Road, Groton, CT 06340, United States.

An LC-MS/MS method was developed and validated to quantify endogenous cyclic guanosine 3',5'-monophosphate (cGMP) in human plasma. The LC-MS/MS and competitive enzyme immunoassay (EIA) assays were compared. cGMP concentrations of 20 human plasma samples were measured by both methods. For the MS-based assay, plasma samples were subjected to a simple protein precipitation procedure by acetonitrile prior to analysis by electrospray ionization LC-MS/MS. De-protonated analytes generated in negative ionization mode were monitored through multiple reaction monitoring (MRM). A stable isotope-labeled internal standard, (13)C(10),(15)N(5)-cGMP, which was biosynthesized in-house, was used in the LC-MS/MS method. The competitive EIA was validated using a commercially available cGMP fluorescence assay kit. The intra-assay accuracy and precision for MS-based assay for cGMP were 6-10.1% CV and -3.6% to 7.3% relative error (RE), respectively, while inter-assay precision and accuracy were 5.6-8.1% CV and -2.1% to 6.3% RE, respectively. The intra-assay accuracy and precision for EIA were 17.9-27.1% CV and -4.9% to 24.5% RE, respectively, while inter-assay precision and accuracy were 15.1-39.5% CV and -30.8% to 4.37% RE, respectively. Near the lower limits of detection, there was little correlation between the cGMP concentration values in human plasma generated by these two methods (R(2)=0.197, P=0.05). Overall, the MS-based assay offered better selectivity, recovery, precision and accuracy over a linear range of 0.5-20ng/mL. The LC-MS/MS method provides an effective tool for the quantitation of cGMP to support clinical mechanistic studies of curative pharmaceuticals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2008.12.063DOI Listing
February 2009

A rat air pouch model for evaluating the efficacy and selectivity of 5-lipoxygenase inhibitors.

Eur J Pharmacol 2008 Apr 5;584(1):166-74. Epub 2008 Feb 5.

Pfizer Global Research & Development, Pfizer Inc., St. Louis, MO 63017, USA.

The 5-lipoxygenase (5-LOX) pathway has been associated with a variety of inflammatory diseases including asthma, atherosclerosis, rheumatoid arthritis, pain, cancer and liver fibrosis. Several classes of 5-LOX inhibitors have been identified, but only one drug, zileuton, a redox inhibitor of 5-LOX, has been approved for clinical use. To better evaluate the efficacy of 5-LOX inhibitors for pharmacological intervention, a rat model was modified to test the in vivo efficacy of 5-LOX inhibitors. Inflammation was produced by adding carrageenan into a newly formed air pouch and prostaglandins produced. While macrophages and neutrophils are present in the inflamed pouch, little 5-LOX products are formed. Cellular 5-LOX activation was obtained by adding calcium ionophore (A23187) into the pouch thus providing a novel model to evaluate the efficacy and selectivity of 5-LOX inhibitors. Also, we described modifications to the in vitro 5-LOX enzyme and cell assays. These assays included a newly developed fluorescence-based enzyme assay, a 5-LOX redox assay, an ex vivo human whole blood assay and an IgE-stimulated rat mast cell assay, all designed for maximal production of leukotrienes. Zileuton and CJ-13,610, a competitive, non-redox inhibitor of 5-LOX, were evaluated for their pharmacological properties using these assays. Although both compounds achieved dose-dependent inhibition of 5-LOX enzyme activity, CJ-13,610 was 3-4 fold more potent than zileuton in all-assays. Evaluation of 5-LOX metabolites-by LC/MS/MS and ELISA confirmed that both compounds selectively inhibited all products downstream of 5-hydroperoxy eicosatetraenoic acid (5-HPETE), including 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxoETE), without inhibition of 12-lipoxygenase (12-LOX), 15-lipoxygenase (15-LOX), or cyclooxygenase (COX) products. In the rat air pouch model, oral dosing of CJ-13,610 and zileuton resulted in selective inhibition 5-LOX activity from pouch exudate and ex vivo rat whole blood with similar potency to in vitro assay. These data show that the rat air pouch model is a reliable and useful tool for evaluating in vivo efficacy of 5-LOX inhibitors and may aid in the development of the next generation of 5-LOX inhibitors, such as the non-redox inhibitors similar to CJ-13,610.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2008.01.021DOI Listing
April 2008

Host limits to accurate human growth hormone production in multiple plant systems.

Biotechnol Bioeng 2005 Mar;89(7):775-82

Agracetus Campus-Monsanto, P.O. Box 620999, Middleton, Wisconsin 53562, USA.

Human growth hormone (hGH) is not only a valuable recombinant therapeutic protein for hormone deficiency indications, but is also an extensively characterized molecule both from recombinant bacterial systems and as circulating in humans. We describe the characterization of hGH produced in three different plant systems: tobacco cell culture, soy seed, and maize seed. The data indicate highest production in the maize seed system, with continued productivity over multiple generations, and when bred to a new host genotype for improved productivity. Purification indicated significant material of the correct structure from both plant cell culture and maize seed, with maize seed also showing correct activity relative to that produced by Escherichia coli. However, all systems showed some proteolyzed hGH, with data from gel electrophoresis, mass spectrometry, and peptide mapping localizing to a region of the protein also prone to cleavage in some other systems. Together, the data indicate the dependence of recombinant protein accumulation on posttranslational processes in different host systems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.20366DOI Listing
March 2005

Selective site-specific fenton oxidation of methionine in model peptides: evidence for a metal-bound oxidant.

J Pharm Sci 2004 May;93(5):1122-30

Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA.

The metal-catalyzed oxidation (MCO) of proteins represents an important pathway for protein degradation. Although many mechanistic details of MCO are currently unknown, such mechanistic information would greatly benefit formulation scientists in the rational design and analysis of protein formulations. Here, we describe the Fenton oxidation (by Fe(2+)/H(2)O(2)) of several Met-, Tyr-, and His containing model peptides, including one derivative containing a conformationally restricted norbornyl Met analogue (Nor), Nor-Gly-His-Met-NH(2). Our results will provide evidence for a metal-bound reactive oxygen species selectively oxidizing Met to Met sulfoxide, indicating a Met-specific oxidant and arguing against the involvement of freely diffusible hydroxyl radicals. The Fenton oxidation of Nor-Gly-His-Met-NH(2) yields a 2:1 preference for sulfoxide formation at the C-terminal Met versus the N-terminal Nor residue, respectively, while incubation of the peptide with H(2)O(2) alone results in a 1:1 ratio. These results are rationalized by the better access of the thioether side chain of the flexible C-terminal Met residue to the peptide-bound iron compared with the conformationally restricted Nor residue. It is commonly believed that Fenton oxidation reactions involve hydroxyl radicals, and that Met oxidation in proteins is predominantly controlled by the surface-accessibility of the respective Met residues. However, occasionally protein oxidation in formulations shows selectivities, which are not consistent with these paradigms. Our results demonstrate additional features of the Fenton reaction such as the formation of a metal-bound oxidant specific for Met (and not Tyr or His), which may assist formulation scientists in the rationalization of unexpected oxidation selectivities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.20013DOI Listing
May 2004