Publications by authors named "Davide Munari"

4 Publications

  • Page 1 of 1

Synthesis and biological characterization of amidopropenyl hydroxamates as HDAC inhibitors.

ChemMedChem 2010 Aug;5(8):1359-72

Genextra Group, Congenia s.r.l., Milan, Italy.

A series of amidopropenyl hydroxamic acid derivatives were prepared as novel inhibitors of human histone deacetylases (HDACs). Several compounds showed potency at <100 nM in the HDAC inhibition assays, sub-micromolar IC(50) values in tests against three tumor cell lines, and remarkable stability in human and mouse microsomes was observed. Three representative compounds were selected for further characterization and submitted to a selectivity profile against a series of class I and class II HDACs as well as to preliminary in vivo pharmacokinetic (PK) experiments. Despite their high microsomal stability, the compounds showed medium-to-high clearance rates in in vivo PK studies as well as in rat and human hepatocytes, indicating that a major metabolic pathway is catalyzed by non-microsomal enzymes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.201000166DOI Listing
August 2010

Poised transcription factories prime silent uPA gene prior to activation.

PLoS Biol 2010 Jan 5;8(1):e1000270. Epub 2010 Jan 5.

Laboratory of Molecular Dynamics of the Nucleus, Division of Genetics and Cell Biology, S Raffaele Scientific Institute, Milan, Italy.

The position of genes in the interphase nucleus and their association with functional landmarks correlate with active and/or silent states of expression. Gene activation can induce chromatin looping from chromosome territories (CTs) and is thought to require de novo association with transcription factories. We identify two types of factory: "poised transcription factories," containing RNA polymerase II phosphorylated on Ser5, but not Ser2, residues, which differ from "active factories" associated with phosphorylation on both residues. Using the urokinase-type plasminogen activator (uPA) gene as a model system, we find that this inducible gene is predominantly associated with poised (S5p(+)S2p(-)) factories prior to activation and localized at the CT interior. Shortly after induction, the uPA locus is found associated with active (S5p(+)S2p(+)) factories and loops out from its CT. However, the levels of gene association with poised or active transcription factories, before and after activation, are independent of locus positioning relative to its CT. RNA-FISH analyses show that, after activation, the uPA gene is transcribed with the same frequency at each CT position. Unexpectedly, prior to activation, the uPA loci internal to the CT are seldom transcriptionally active, while the smaller number of uPA loci found outside their CT are transcribed as frequently as after induction. The association of inducible genes with poised transcription factories prior to activation is likely to contribute to the rapid and robust induction of gene expression in response to external stimuli, whereas gene positioning at the CT interior may be important to reinforce silencing mechanisms prior to induction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pbio.1000270DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797137PMC
January 2010

Synthesis and biological evaluation of N-hydroxyphenylacrylamides and N-hydroxypyridin-2-ylacrylamides as novel histone deacetylase inhibitors.

J Med Chem 2010 Jan;53(2):822-39

Genextra Group, Congenia s.r.l., Via Adamello 16, 20139 Milan, Italy.

The histone deacetylases (HDACs) are able to regulate gene expression, and histone deacetylase inhibitors (HDACi) emerged as a new class of agents in the treatment of cancer as well as other human disorders such as neurodegenerative diseases. In the present investigation, we report on the synthesis and biological evaluation of compounds derived from the expansion of a HDAC inhibitor scaffold having N-hydroxy-3-phenyl-2-propenamide and N-hydroxy-3-(pyridin-2-yl)-2-propenamide as core structures and containing a phenyloxopropenyl moiety, either unsubstituted or substituted by a 4-methylpiperazin-1-yl or 4-methylpiperazin-1-ylmethyl group. The compounds were evaluated for their ability to inhibit nuclear HDACs, as well as for their in vitro antiproliferative activity. Moreover, their metabolic stability in microsomes and aqueous solubility were studied and selected compounds were further characterized by in vivo pharmacokinetic experiments. These compounds showed a remarkable stability in vivo, compared to hydroxamic acid HDAC inhibitors that have already entered clinical trials. The representative compound 30b showed in vivo antitumor activity in a human colon carcinoma xenograft model.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm901502pDOI Listing
January 2010

A transcription-dependent micrococcal nuclease-resistant fragment of the urokinase-type plasminogen activator promoter interacts with the enhancer.

J Biol Chem 2007 Apr 28;282(17):12537-46. Epub 2007 Feb 28.

Laboratory of Molecular Genetics, S. Raffaele Scientific Institute, Università Vita-Salute S. Raffaele, Via Olgettina 58, 20132 Milano, Italy.

We show the interaction between the enhancer and the minimal promoter of urokinase-type plasminogen activator gene during active transcription by coupling micrococcal nuclease digestion of cross-linked, sonicated chromatin, and chromatin immunoprecipitation. This approach allowed the precise identification of the interacting genomic fragments, one of which is resistant to micrococcal nuclease cleavage. The interacting fragments form a single transcriptional control unit, as indicated by their common protein content. Furthermore, we show that the enhancer-MP interaction persists during the early stages of transcription and is lost upon alpha-amanitin treatment, indicating the requirement for active transcription. Our results support a looping model of interaction between the enhancer and the MP of the urokinase-type plasminogen activator gene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M700867200DOI Listing
April 2007