Publications by authors named "David W Koppenaal"

42 Publications

Metabolomic profiling of wild-type and mutant soybean root nodules using laser-ablation electrospray ionization mass spectrometry reveals altered metabolism.

Plant J 2020 08 21;103(5):1937-1958. Epub 2020 Jun 21.

Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.

The establishment of the nitrogen-fixing symbiosis between soybean and Bradyrhizobium japonicum is a complex process. To document the changes in plant metabolism as a result of symbiosis, we utilized laser ablation electrospray ionization-mass spectrometry (LAESI-MS) for in situ metabolic profiling of wild-type nodules, nodules infected with a B. japonicum nifH mutant unable to fix nitrogen, nodules doubly infected by both strains, and nodules formed on plants mutated in the stearoyl-acyl carrier protein desaturase (sacpd-c) gene, which were previously shown to have an altered nodule ultrastructure. The results showed that the relative abundance of fatty acids, purines, and lipids was significantly changed in response to the symbiosis. The nifH mutant nodules had elevated levels of jasmonic acid, correlating with signs of nitrogen deprivation. Nodules resulting from the mixed inoculant displayed similar, overlapping metabolic distributions within the sectors of effective (fix ) and ineffective (nifH mutant, fix ) endosymbionts. These data are inconsistent with the notion that plant sanctioning is cell autonomous. Nodules lacking sacpd-c displayed an elevation of soyasaponins and organic acids in the central necrotic regions. The present study demonstrates the utility of LAESI-MS for high-throughput screening of plant phenotypes. Overall, nodules disrupted in the symbiosis were elevated in metabolites related to plant defense.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.14815DOI Listing
August 2020

In-Situ Metabolomic Analysis of Roots Colonized by Beneficial Endophytic Bacteria.

Mol Plant Microbe Interact 2020 Feb 6;33(2):272-283. Epub 2019 Dec 6.

Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A.

Over the past decades, crop yields have risen in parallel with increasing use of fossil fuel-derived nitrogen (N) fertilizers but with concomitant negative impacts on climate and water resources. There is a need for more sustainable agricultural practices, and biological nitrogen fixation (BNF) could be part of the solution. A variety of nitrogen-fixing, epiphytic, and endophytic plant growth-promoting bacteria (PGPB) are known to stimulate plant growth. However, compared with the rhizobium-legume symbiosis, little mechanistic information is available as to how PGPB affect plant metabolism. Therefore, we investigated the metabolic changes in roots of the model grass species upon endophytic colonization by SmR1 (fix) or a fix mutant strain (SmR54) compared with uninoculated roots. Endophytic colonization of the root is highly localized and, hence, analysis of whole-root segments dilutes the metabolic signature of those few cells impacted by the bacteria. Therefore, we utilized in-situ laser ablation electrospray ionization mass spectrometry to sample only those root segments at or adjacent to the sites of bacterial colonization. Metabolites involved in purine, zeatin, and riboflavin pathways were significantly more abundant in inoculated plants, while metabolites indicative of nitrogen, starch, and sucrose metabolism were reduced in roots inoculated with the fix strain or uninoculated, presumably due to N limitation. Interestingly, compounds, involved in indole-alkaloid biosynthesis were more abundant in the roots colonized by the fix strain, perhaps reflecting a plant defense response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1094/MPMI-06-19-0174-RDOI Listing
February 2020

Proteomic Insights into Phycobilisome Degradation, A Selective and Tightly Controlled Process in The Fast-Growing Cyanobacterium UTEX 2973.

Biomolecules 2019 08 16;9(8). Epub 2019 Aug 16.

Department of Biology, Washington University, St. Louis, MO 63130, USA.

Phycobilisomes (PBSs) are large (3-5 megadalton) pigment-protein complexes in cyanobacteria that associate with thylakoid membranes and harvest light primarily for photosystem II. PBSs consist of highly ordered assemblies of pigmented phycobiliproteins (PBPs) and linker proteins that can account for up to half of the soluble protein in cells. Cyanobacteria adjust to changing environmental conditions by modulating PBS size and number. In response to nutrient depletion such as nitrogen (N) deprivation, PBSs are degraded in an extensive, tightly controlled, and reversible process. In UTEX 2973, a fast-growing cyanobacterium with a doubling time of two hours, the process of PBS degradation is very rapid, with 80% of PBSs per cell degraded in six hours under optimal light and CO conditions. Proteomic analysis during PBS degradation and re-synthesis revealed multiple proteoforms of PBPs with partially degraded phycocyanobilin (PCB) pigments. NblA, a small proteolysis adaptor essential for PBS degradation, was characterized and validated with targeted mass spectrometry. NblA levels rose from essentially 0 to 25,000 copies per cell within 30 min of N depletion, and correlated with the rate of decrease in phycocyanin (PC). Implications of this correlation on the overall mechanism of PBS degradation during N deprivation are discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/biom9080374DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722726PMC
August 2019

Ultra-High Resolution Elemental/Isotopic Mass Spectrometry (m/Δm > 1,000,000): Coupling of the Liquid Sampling-Atmospheric Pressure Glow Discharge with an Orbitrap Mass Spectrometer for Applications in Biological Chemistry and Environmental Analysis.

J Am Soc Mass Spectrom 2019 Jul 18;30(7):1163-1168. Epub 2019 Apr 18.

Department of Chemistry, Clemson University, Clemson, SC, 29634, USA.

Many fundamental questions of astrophysics, biochemistry, and geology rely on the ability to accurately and precisely measure the mass and abundance of isotopes. Taken a step further, the capacity to perform such measurements on intact molecules provides insights into processes in diverse biological systems. Described here is the coupling of a combined atomic and molecular (CAM) ionization source, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma, with a commercially available ThermoScientific Fusion Lumos mass spectrometer. Demonstrated for the first time is the ionization and isotopically resolved fingerprinting of a long-postulated, but never mass-spectrometrically observed, bi-metallic complex Hg:Se-cysteine. Such a complex has been implicated as having a role in observations of Hg detoxification by selenoproteins/amino acids. Demonstrated as well is the ability to mass spectrometrically-resolve the geochronologically important isobaric Sr and Rb species (Δm ~ 0.3 mDa, mass resolution m/Δm ≈ 1,700,000). The mass difference in this case reflects the beta-decay of the Rb to the stable Sr isotope. These two demonstrations highlight what may be a significant change in bioinorganic and atomic mass spectrometry, with impact expected across a broad spectrum of the physical, biological, and geological sciences. Graphical Abstract ".
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13361-019-02183-wDOI Listing
July 2019

Ambient Metabolic Profiling and Imaging of Biological Samples with Ultrahigh Molecular Resolution Using Laser Ablation Electrospray Ionization 21 Tesla FTICR Mass Spectrometry.

Anal Chem 2019 04 12;91(8):5028-5035. Epub 2019 Mar 12.

Department of Chemistry , The George Washington University , Washington , D.C. 20052 , United States.

Mass spectrometry (MS) is an indispensable analytical tool to capture the array of metabolites within complex biological systems. However, conventional MS-based metabolomic workflows require extensive sample processing and separation resulting in limited throughput and potential alteration of the native molecular states in these systems. Ambient ionization methods, capable of sampling directly from tissues, circumvent some of these issues but require high-performance MS to resolve the molecular complexity within these samples. Here, we demonstrate a unique combination of laser ablation electrospray ionization (LAESI) coupled with a 21 tesla Fourier transform ion cyclotron resonance (21T-FTICR) for direct MS analysis and imaging applications. This analytical platform provides isotopic fine structure information directly from biological tissues, enabling the rapid assignment of molecular formulas and delivering a higher degree of confidence for molecular identification.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.8b05084DOI Listing
April 2019

Siderophore profiling of co-habitating soil bacteria by ultra-high resolution mass spectrometry.

Metallomics 2019 01;11(1):166-175

Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA.

The chemical structure of organic molecules profoundly impacts their interactions with metal ions and mineral phases in soils. Understanding the sources and cycling of metal-chelating compounds is therefore essential for predicting the bioavailability and transport of metals throughout terrestrial environments. Here we investigate the molecular speciation of organic molecules that solubilize trace metals in calcareous soils from Eastern Washington. Ultra-high performance Fourier transform ion cyclotron resonance mass spectrometry at 21 Tesla enabled fast and confident detection and identification of metal chelators that are produced by microbes that inhabit these soils based on screening for features that match diagnostic metal isotope patterns. We compared two approaches, one based on direct infusion using the incorporation of a rare isotope to validate true iron-binding features, and another based on separation with liquid chromatography and detection of isotopologues with coherent elution profiles. While the isotopic exchange method requires significantly shorter analysis time, nearly twice as many features were observed with liquid chromatography mass spectrometry (LCMS), mostly due to the reduction in ion suppression where major features limit the sensitivity of minor features. In addition, LCMS enabled the collection of higher quality fragmentation spectra and facilitated feature identification. Siderophores belonging to four major classes were identified, including ferrioxamines, pseudobactins, enterobactins, and arthrobactins. Each of these siderophores likely derives from a unique member of the microbial community, and each possesses different chemical characteristics and uptake pathways, likely contributing to fierce competition for iron within these soils. Our results provide insight into the metabolic pathways by which microbes that co-inhabit calcareous soils compete for this essential micronutrient.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8mt00252eDOI Listing
January 2019

Observed metabolic asymmetry within soybean root nodules reflects unexpected complexity in rhizobacteria-legume metabolite exchange.

ISME J 2018 09 13;12(9):2335-2338. Epub 2018 Jun 13.

Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA.

In this study, the three-dimensional spatial distributions of a number of metabolites involved in regulating symbiosis and biological nitrogen fixation (BNF) within soybean root nodules were revealed using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). While many metabolites exhibited distinct spatial compartmentalization, some metabolites were asymmetrically distributed throughout the nodule (e.g., S-adenosylmethionine). These results establish a more complex metabolic view of plant-bacteria symbiosis (and BNF) within soybean nodules than previously hypothesized. Collectively these findings suggest that spatial perspectives in metabolic regulation should be considered to unravel the overall complexity of interacting organisms, like those relating to associations of nitrogen-fixing bacteria with host plants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41396-018-0188-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6092352PMC
September 2018

Determination of uranium isotope ratios using a liquid sampling atmospheric pressure glow discharge/Orbitrap mass spectrometer system.

Rapid Commun Mass Spectrom 2017 Sep;31(18):1534-1540

Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA.

Rationale: The field of highly accurate and precise isotope ratio analysis, for use in nonproliferation, has been dominated by thermal ionization and inductively coupled plasma mass spectrometry. While these techniques are considered the gold standard for isotope ratio analysis, a downsized instrument capable of accurately and precisely measuring uranium (U) isotope ratios is desirable for field studies or in laboratories with limited infrastructure.

Methods: The developed system interfaces the liquid sampling, an atmospheric pressure glow discharge (LS-APGD) ion source, with a high-resolution Exactive Orbitrap mass spectrometer. With this experimental setup certified U isotope standards and unknown samples were analyzed. The accuracy and precision of the system were then determined.

Results: The LS-APGD/Exactive instrument measured a certified reference material of natural U ( U/ U = 0.007261) with a U/ U ratio of 0.007065 and a % relative standard uncertainty of 0.082, meeting the International Target Values for the destructive analysis of U. In addition, when three unknowns were measured and these measurements were compared with the results from an ICP multi-collector instrument, there were no statistical differences between the two instruments.

Conclusions: The LS-APGD/Orbitrap system, while still in the preliminary stages of development, offers highly accurate and precise isotope ratio results that suggest a potential paradigm shift in the world of isotope ratio analysis. Furthermore, the portability of the LS-APGD as an elemental ion source, combined with the small size and smaller operating demands of the Orbitrap, suggests that the instrumentation is capable of being field-deployable.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.7937DOI Listing
September 2017

Solid matrix transformation and tracer addition using molten ammonium bifluoride salt as a sample preparation method for laser ablation inductively coupled plasma mass spectrometry.

Analyst 2017 Sep;142(18):3333-3340

Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352, USA.

Solid sampling and analysis methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), are challenged by matrix effects and calibration difficulties. Matrix-matched standards for external calibration are seldom available and it is difficult to distribute spikes evenly into a solid matrix as internal standards. While isotopic ratios of the same element can be measured to high precision, matrix-dependent effects in the sampling and analysis process frustrate accurate quantification and elemental ratio determinations. Here we introduce a potentially general solid matrix transformation approach entailing chemical reactions in molten ammonium bifluoride (ABF) salt that enables the introduction of spikes as tracers or internal standards. Proof of principle experiments show that the decomposition of uranium ore in sealed PFA fluoropolymer vials at 230 °C yields, after cooling, new solids suitable for direct solid sampling by LA. When spikes are included in the molten salt reaction, subsequent LA-ICP-MS sampling at several spots indicate that the spikes are evenly distributed, and that U-235 tracer dramatically improves reproducibility in U-238 analysis. Precisions improved from 17% relative standard deviation for U-238 signals to 0.1% for the ratio of sample U-238 to spiked U-235, a factor of over two orders of magnitude. These results introduce the concept of solid matrix transformation (SMT) using ABF, and provide proof of principle for a new method of incorporating internal standards into a solid for LA-ICP-MS. This new approach, SMT-LA-ICP-MS, provides opportunities to improve calibration and quantification in solids based analysis. Looking forward, tracer addition to transformed solids opens up LA-based methods to analytical methodologies such as standard addition, isotope dilution, preparation of matrix-matched solid standards, external calibration, and monitoring instrument drift against external calibration standards.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7an00777aDOI Listing
September 2017

Laser-ablation electrospray ionization mass spectrometry with ion mobility separation reveals metabolites in the symbiotic interactions of soybean roots and rhizobia.

Plant J 2017 Jul 23;91(2):340-354. Epub 2017 May 23.

Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA.

Technologies enabling in situ metabolic profiling of living plant systems are invaluable for understanding physiological processes and could be used for rapid phenotypic screening (e.g., to produce plants with superior biological nitrogen-fixing ability). The symbiotic interaction between legumes and nitrogen-fixing soil bacteria results in a specialized plant organ (i.e., root nodule) where the exchange of nutrients between host and endosymbiont occurs. Laser-ablation electrospray ionization mass spectrometry (LAESI-MS) is a method that can be performed under ambient conditions requiring minimal sample preparation. Here, we employed LAESI-MS to explore the well characterized symbiosis between soybean (Glycine max L. Merr.) and its compatible symbiont, Bradyrhizobium japonicum. The utilization of ion mobility separation (IMS) improved the molecular coverage, selectivity, and identification of the detected biomolecules. Specifically, incorporation of IMS resulted in an increase of 153 differentially abundant spectral features in the nodule samples. The data presented demonstrate the advantages of using LAESI-IMS-MS for the rapid analysis of intact root nodules, uninfected root segments, and free-living rhizobia. Untargeted pathway analysis revealed several metabolic processes within the nodule (e.g., zeatin, riboflavin, and purine synthesis). Compounds specific to the uninfected root and bacteria were also detected. Lastly, we performed depth profiling of intact nodules to reveal the location of metabolites to the cortex and inside the infected region, and lateral profiling of sectioned nodules confirmed these molecular distributions. Our results established the feasibility of LAESI-IMS-MS for the analysis and spatial mapping of plant tissues, with its specific demonstration to improve our understanding of the soybean-rhizobial symbiosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.13569DOI Listing
July 2017

Phycobilisome truncation causes widespread proteome changes in Synechocystis sp. PCC 6803.

PLoS One 2017 2;12(3):e0173251. Epub 2017 Mar 2.

Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America.

In cyanobacteria such as Synechocystis sp. PCC 6803, large antenna complexes called phycobilisomes (PBS) harvest light and transfer the energy to the photosynthetic reaction centers. Modification of the light harvesting machinery in cyanobacteria has widespread consequences, causing changes in cell morphology and physiology. In the current study, we investigated the effects of PBS truncation on the proteomes of three Synechocystis 6803 PBS antenna mutants. These range from the progressive truncation of phycocyanin rods in the CB and CK strains, to full removal of PBS in the PAL mutant. Comparative quantitative protein results revealed surprising changes in protein abundances in the mutant strains. Our results showed that PBS truncation in Synechocystis 6803 broadly impacted core cellular mechanisms beyond light harvesting and photosynthesis. Specifically, we observed dramatic alterations in membrane transport mechanisms, where the most severe PBS truncation in the PAL strain appeared to suppress the cellular utilization and regulation of bicarbonate and iron. These changes point to the role of PBS as a component critical to cell function, and demonstrate the continuing need to assess systems-wide protein based abundances to understand potential indirect phenotypic effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173251PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333879PMC
September 2017

Unambiguous identification and discovery of bacterial siderophores by direct injection 21 Tesla Fourier transform ion cyclotron resonance mass spectrometry.

Metallomics 2017 01;9(1):82-92

Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA.

Under iron-limiting conditions, bacteria produce low molecular mass Fe(iii) binding molecules known as siderophores to sequester the Fe(iii), along with other elements, increasing their bioavailability. Siderophores are thought to influence iron cycling and biogeochemistry in both marine and terrestrial ecosystems and hence the need for rapid, confident characterization of these compounds has increased. In this study, the type of siderophores produced by two marine bacterial species, Synechococcus sp. PCC 7002 and Vibrio cyclitrophicus 1F53, were characterized by use of a newly developed 21 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICR MS) with direct injection electrospray ionization. This technique allowed for the rapid detection of synechobactins from Synechococcus sp. PCC 7002 as well as amphibactins from Vibrio cyclitrophicus 1F53 based on high mass accuracy and resolution allowing for observation of specific Fe isotopes and isotopic fine structure enabling highly confident identification of these siderophores. When combined with molecular network analysis two new amphibactins were discovered and verified by tandem MS. These results show that high-field FTICR MS is a powerful technique that will greatly improve the ability to rapidly identify and discover metal binding species in the environment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6mt00201cDOI Listing
January 2017

21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox.

J Am Soc Mass Spectrom 2016 12 12;27(12):1929-1936. Epub 2016 Oct 12.

Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Ave. (K8-98), P.O. Box 999, Richland, WA, 99352, USA.

We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged Substance P with minimal spectral averaging, and 8158 molecular formulas assigned to Suwannee River Fulvic Acid standard with root-mean-square (RMS) error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apo-transferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g., 6 s time-domains with absorption mode processing yielded resolution of approximately 1 M at m/z = 2700). Graphical Abstract ᅟ.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13361-016-1507-9DOI Listing
December 2016

Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer.

J Am Soc Mass Spectrom 2016 08 14;27(8):1393-403. Epub 2016 Apr 14.

Department of Chemistry, Clemson University, Clemson, SC, 29634, USA.

In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for Orbitrap analyzers are well-documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LS-APGD microplasma and the inherent IR measurement qualities of Orbitrap analyzers. Important to the IR performance, the various operating parameters of the Orbitrap sampling interface, high-energy collisional dissociation (HCD) stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases, the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1% RSD can be achieved, with values of 1%-3% RSD observed for low-abundance species. The results suggest that the LS-APGD is a promising candidate for field deployable MS analysis and that the high resolving powers of the Orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision IRs. Graphical Abstract ᅟ.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13361-016-1402-4DOI Listing
August 2016

Global Proteomic Analysis Reveals an Exclusive Role of Thylakoid Membranes in Bioenergetics of a Model Cyanobacterium.

Mol Cell Proteomics 2016 06 7;15(6):2021-32. Epub 2016 Apr 7.

From the ‡Department of Biology, Washington University, St. Louis, Missouri 63130;

Cyanobacteria are photosynthetic microbes with highly differentiated membrane systems. These organisms contain an outer membrane, plasma membrane, and an internal system of thylakoid membranes where the photosynthetic and respiratory machinery are found. This existence of compartmentalization and differentiation of membrane systems poses a number of challenges for cyanobacterial cells in terms of organization and distribution of proteins to the correct membrane system. Proteomics studies have long sought to identify the components of the different membrane systems in cyanobacteria, and to date about 450 different proteins have been attributed to either the plasma membrane or thylakoid membrane. Given the complexity of these membranes, many more proteins remain to be identified, and a comprehensive catalogue of plasma membrane and thylakoid membrane proteins is needed. Here we describe the identification of 635 differentially localized proteins in Synechocystis sp. PCC 6803 by quantitative iTRAQ isobaric labeling; of these, 459 proteins were localized to the plasma membrane and 176 were localized to the thylakoid membrane. Surprisingly, we found over 2.5 times the number of unique proteins identified in the plasma membrane compared with the thylakoid membrane. This suggests that the protein composition of the thylakoid membrane is more homogeneous than the plasma membrane, consistent with the role of the plasma membrane in diverse cellular processes including protein trafficking and nutrient import, compared with a more specialized role for the thylakoid membrane in cellular energetics. Thus, our data clearly define the two membrane systems with distinct functions. Overall, the protein compositions of the Synechocystis 6803 plasma membrane and thylakoid membrane are quite similar to that of the plasma membrane of Escherichia coli and thylakoid membrane of Arabidopsis chloroplasts, respectively. Synechocystis 6803 can therefore be described as a Gram-negative bacterium with an additional internal membrane system that fulfills the energetic requirements of the cell.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/mcp.M115.057240DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5083105PMC
June 2016

Distance-of-Flight Mass Spectrometry with IonCCD Detection and an Inductively Coupled Plasma Source.

J Am Soc Mass Spectrom 2016 Mar 9;27(3):371-9. Epub 2015 Nov 9.

Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA.

Distance-of-flight mass spectrometry (DOFMS) is demonstrated for the first time with a commercially available ion detector-the IonCCD camera. Because DOFMS is a velocity-based MS technique that provides spatially dispersive, simultaneous mass spectrometry, a position-sensitive ion detector is needed for mass-spectral collection. The IonCCD camera is a 5.1-cm long, 1-D array that is capable of simultaneous, multichannel ion detection along a focal plane, which makes it an attractive option for DOFMS. In the current study, the IonCCD camera is evaluated for DOFMS with an inductively coupled plasma (ICP) ionization source over a relatively short field-free mass-separation distance of 25.3-30.4 cm. The combination of ICP-DOFMS and the IonCCD detector results in a mass-spectral resolving power (FWHM) of approximately 900 and isotope-ratio precision equivalent to or slightly better than current ICP-TOFMS systems. The measured isotope-ratio precision in % relative standard deviation (%RSD) was ≥0.008%RSD for nonconsecutive isotopes at 10-ppm concentration (near the ion-signal saturation point) and ≥0.02%RSD for all isotopes at 1-ppm. Results of DOFMS with the IonCCD camera are also compared with those of two previously characterized detection setups.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13361-015-1295-7DOI Listing
March 2016

Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO₂.

Sci Rep 2015 Jan 30;5:8132. Epub 2015 Jan 30.

Department of Biology, Washington University, St. Louis, MO 63130.

Photosynthetic microbes are of emerging interest as production organisms in biotechnology because they can grow autotrophically using sunlight, an abundant energy source, and CO₂, a greenhouse gas. Important traits for such microbes are fast growth and amenability to genetic manipulation. Here we describe Synechococcus elongatus UTEX 2973, a unicellular cyanobacterium capable of rapid autotrophic growth, comparable to heterotrophic industrial hosts such as yeast. Synechococcus UTEX 2973 can be readily transformed for facile generation of desired knockout and knock-in mutations. Genome sequencing coupled with global proteomics studies revealed that Synechococcus UTEX 2973 is a close relative of the widely studied cyanobacterium Synechococcus elongatus PCC 7942, an organism that grows more than two times slower. A small number of nucleotide changes are the only significant differences between the genomes of these two cyanobacterial strains. Thus, our study has unraveled genetic determinants necessary for rapid growth of cyanobacterial strains of significant industrial potential.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep08132DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389031PMC
January 2015

Proteome-wide light/dark modulation of thiol oxidation in cyanobacteria revealed by quantitative site-specific redox proteomics.

Mol Cell Proteomics 2014 Dec 12;13(12):3270-85. Epub 2014 Aug 12.

From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352;

Reversible protein thiol oxidation is an essential regulatory mechanism of photosynthesis, metabolism, and gene expression in photosynthetic organisms. Herein, we present proteome-wide quantitative and site-specific profiling of in vivo thiol oxidation modulated by light/dark in the cyanobacterium Synechocystis sp. PCC 6803, an oxygenic photosynthetic prokaryote, using a resin-assisted thiol enrichment approach. Our proteomic approach integrates resin-assisted enrichment with isobaric tandem mass tag labeling to enable site-specific and quantitative measurements of reversibly oxidized thiols. The redox dynamics of ∼2,100 Cys-sites from 1,060 proteins under light, dark, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (a photosystem II inhibitor) conditions were quantified. In addition to relative quantification, the stoichiometry or percentage of oxidation (reversibly oxidized/total thiols) for ∼1,350 Cys-sites was also quantified. The overall results revealed broad changes in thiol oxidation in many key biological processes, including photosynthetic electron transport, carbon fixation, and glycolysis. Moreover, the redox sensitivity along with the stoichiometric data enabled prediction of potential functional Cys-sites for proteins of interest. The functional significance of redox-sensitive Cys-sites in NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, peroxiredoxin (AhpC/TSA family protein Sll1621), and glucose 6-phosphate dehydrogenase was further confirmed with site-specific mutagenesis and biochemical studies. Together, our findings provide significant insights into the broad redox regulation of photosynthetic organisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/mcp.M114.041160DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256482PMC
December 2014

Zoom-TOFMS: addition of a constant-momentum-acceleration "zoom" mode to time-of-flight mass spectrometry.

Anal Bioanal Chem 2014 Nov 28;406(29):7419-30. Epub 2014 May 28.

Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA.

In this study, we demonstrate the performance of a new mass spectrometry concept called zoom time-of-flight mass spectrometry (zoom-TOFMS). In our zoom-TOFMS instrument, we combine two complementary types of TOFMS: conventional, constant-energy acceleration (CEA) TOFMS and constant-momentum acceleration (CMA) TOFMS to provide complete mass-spectral coverage as well as enhanced resolution and duty factor for a narrow, targeted mass region, respectively. Alternation between CEA- and CMA-TOFMS requires only that electrostatic instrument settings (i.e., reflectron and ion optics) and ion acceleration conditions be changed. The prototype zoom-TOFMS instrument has orthogonal-acceleration geometry, a total field-free distance of 43 cm, and a direct-current glow-discharge ionization source. Experimental results demonstrate that the CMA-TOFMS "zoom" mode offers resolution enhancement of 1.6 times over single-stage acceleration CEA-TOFMS. For the atomic mass range studied here, the maximum resolving power at full-width half-maximum observed for CEA-TOFMS was 1,610 and for CMA-TOFMS the maximum was 2,550. No difference in signal-to-noise (S/N) ratio was observed between the operating modes of zoom-TOFMS when both were operated at equivalent repetition rates. For a 10-kHz repetition rate, S/N values for CEA-TOFMS varied from 45 to 990 and from 67 to 10,000 for CMA-TOFMS. This resolution improvement is the result of a linear TOF-to-mass scale and the energy-focusing capability of CMA-TOFMS. Use of CMA also allows ions outside a given m/z range to be rejected by simple ion-energy barriers to provide a substantial improvement in duty factor.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-014-7875-8DOI Listing
November 2014

Proteomic profiles of five strains of oxygenic photosynthetic cyanobacteria of the genus Cyanothece.

J Proteome Res 2014 Jul 4;13(7):3262-76. Epub 2014 Jun 4.

Pacific Northwest National Laboratory , Richland, Washington 99352, United States.

Members of the cyanobacterial genus Cyanothece exhibit considerable variation in physiological and biochemical characteristics. The comparative assessment of the genomes and the proteomes has the potential to provide insights on differences among Cyanothece strains. By applying Sequedex, an annotation-independent method for ascribing gene functions, we confirmed significant species-specific differences of functional genes in different Cyanothece strains, particularly in Cyanothece PCC7425. Using a shotgun proteomics approach based on prefractionation and tandem mass spectrometry, we detected ∼28-48% of the theoretical Cyanothece proteome, depending on the strain. The expression of a total of 642 orthologous proteins was observed in all five Cyanothece strains. These shared orthologous proteins showed considerable correlations in their abundances across different Cyanothece strains. Functional classification indicated that the majority of proteins involved in central metabolic functions such as amino acid, carbohydrate, protein, and RNA metabolism, photosynthesis, respiration, and stress responses were observed to a greater extent in the core proteome, whereas proteins involved in membrane transport, iron acquisition, regulatory functions, flagellar motility, and chemotaxis were observed to a greater extent in the unique proteome. Considerable differences were evident across different Cyanothece strains. Notably, the analysis of Cyanothece PCC7425, which showed the highest number of unique proteins (682), provided direct evidence of evolutionary differences in this strain. We conclude that Cyanothece PCC7425 diverged significantly from the other Cyanothece strains or evolved from a different lineage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr5000889DOI Listing
July 2014

Constant-momentum acceleration time-of-flight mass spectrometry with energy focusing.

J Am Soc Mass Spectrom 2013 Dec 1;24(12):1853-61. Epub 2013 Oct 1.

Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA.

Fundamental aspects of constant-momentum acceleration time-of-flight mass spectrometry (CMA-TOFMS) are explored as a means to improve mass resolution. By accelerating all ions to the same momentum rather than to the same energy, the effects of the initial ion spatial and energy distributions upon the total ion flight time are decoupled. This decoupling permits the initial spatial distribution of ions in the acceleration region to be optimized independently, and energy focus, including ion turn-around-time error, to be accomplished with a linear-field reflectron. Constant-momentum acceleration also linearly disperses ions across time according to mass-to-charge (m/z) ratio, instead of the quadratic relationship between flight time and m/z found in conventional TOFMS. Here, CMA-TOFMS is shown to achieve simultaneous spatial and energy focusing over a selected portion of the mass spectrum. An orthogonal-acceleration time-of-flight system outfitted with a reduced-pressure DC glow discharge (GD) ionization source is used to demonstrate CMA-TOFMS with atomic ions. The influence of experimental parameters such as the amplitude and width of the time-dependent CMA pulse on mass resolution is investigated, and a useful CMA-TOFMS focusing window of 2 to 18 Da is found for GD-CMA-TOFMS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13361-013-0723-9DOI Listing
December 2013

Interleaved Distance-of-Flight Mass Spectrometry: A Simple Method to Improve the Instrument Duty Factor.

J Am Soc Mass Spectrom 2013 Nov 28;24(11):1736-44. Epub 2013 Aug 28.

Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA.

Distance-of-flight mass spectrometry (DOFMS) is a velocity-based, spatially dispersive MS technique in which ions are detected simultaneously along the plane of a spatially selective detector. In DOFMS, ions fly though the instrument and mass separate over a set period of time. The single flight time at which all ions are measured defines the specific m/z values that are detectable; the range of m/z values is dictated by the length of the spatially selective detector. However, because each packet of ions is detected at a single flight time, multiple groups of ions can fly through the instrument concurrently and be detected at a single detector. In this way, DOFMS experiments can be interleaved to perform several mass separation experiments within a single DOF repetition period. Interleaved operation allows the orthogonal acceleration region to be operated at a repetition rate higher than the reciprocal of the flight time, which improves the duty factor of the technique. In this paper, we consider the fundamental parameters of interleaved DOFMS and report first results.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13361-013-0718-6DOI Listing
November 2013

How constant momentum acceleration decouples energy and space focusing in distance-of-flight and time-of-flight mass spectrometries.

J Am Soc Mass Spectrom 2013 May 23;24(5):690-700. Epub 2013 Mar 23.

Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.

Resolution in time-of-flight mass spectrometry (TOFMS) is ordinarily limited by the initial energy and space distributions within an instrument's acceleration region and by the length of the field-free flight zone. With gaseous ion sources, these distributions lead to systematic flight-time errors that cannot be simultaneously corrected with conventional static-field ion-focusing devices (i.e., an ion mirror). It is known that initial energy and space distributions produce non-linearly correlated errors in both ion velocity and exit time from the acceleration region. Here we reinvestigate an old acceleration technique, constant-momentum acceleration (CMA), to decouple the effects of initial energy and space distributions. In CMA, only initial ion energies (and not their positions) affect the velocity ions gain. Therefore, with CMA, the spatial distribution within the acceleration region can be manipulated without creating ion-velocity error. The velocity differences caused by a spread in initial ion energy can be corrected with an ion mirror. We discuss here the use of CMA and independent focusing of energy and space distributions for both distance-of-flight mass spectrometry (DOFMS) and TOFMS. Performance characteristics of our CMA-DOFMS and CMA-TOFMS instrument, fitted with a glow-discharge ionization source, are described. In CMA-DOFMS, resolving powers (FWHM) of greater than 1000 are achieved for atomic ions with a flight length of 285 mm. In CMA-TOFMS, only ions over a narrow range of m/z values can be energy-focused; however, the technique offers improved resolution for these focused ions, with resolving powers of greater than 2000 for a separation distance of 350 mm.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13361-013-0587-zDOI Listing
May 2013

Proteome analyses of strains ATCC 51142 and PCC 7822 of the diazotrophic cyanobacterium Cyanothece sp. under culture conditions resulting in enhanced H₂ production.

Appl Environ Microbiol 2013 Feb 30;79(4):1070-7. Epub 2012 Nov 30.

Pacific Northwest National Laboratory, Richland, Washington, USA.

Cultures of the cyanobacterial genus Cyanothece have been shown to produce high levels of biohydrogen. These strains are diazotrophic and undergo pronounced diurnal cycles when grown under N(2)-fixing conditions in light-dark cycles. We seek to better understand the way in which proteins respond to these diurnal changes, and we performed quantitative proteome analysis of Cyanothece sp. strains ATCC 51142 and PCC 7822 grown under 8 different nutritional conditions. Nitrogenase expression was limited to N(2)-fixing conditions, and in the absence of glycerol, nitrogenase gene expression was linked to the dark period. However, glycerol induced expression of nitrogenase during part of the light period, together with cytochrome c oxidase (Cox), glycogen phosphorylase (Glp), and glycolytic and pentose phosphate pathway (PPP) enzymes. This indicated that nitrogenase expression in the light was facilitated via higher levels of respiration and glycogen breakdown. Key enzymes of the Calvin cycle were inhibited in Cyanothece ATCC 51142 in the presence of glycerol under H(2)-producing conditions, suggesting a competition between these sources of carbon. However, in Cyanothece PCC 7822, the Calvin cycle still played a role in cofactor recycling during H(2) production. Our data comprise the first comprehensive profiling of proteome changes in Cyanothece PCC 7822 and allow an in-depth comparative analysis of major physiological and biochemical processes that influence H(2) production in both strains. Our results revealed many previously uncharacterized proteins that may play a role in nitrogenase activity and in other metabolic pathways and may provide suitable targets for genetic manipulation that would lead to improvement of large-scale H(2) production.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/AEM.02864-12DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568600PMC
February 2013

Extension of the focusable mass range in distance-of-flight mass spectrometry with multiple detectors.

Rapid Commun Mass Spectrom 2012 Nov;26(21):2526-34

Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.

Rationale: Distance-of-flight mass spectrometry (DOFMS) is a velocity-based mass separation technique in which ions are spread across a spatially selective detector according to m/z. In this work, we investigate the practical mass range available for DOFMS with a finite-length detector.

Methods: A glow-discharge DOFMS instrument has been constructed for the analysis of atomic ions. This instrument was modified to accommodate two spatially selective ion detectors, arranged co-linearly, along the mass-separation axis of the analyzer. With this geometry, each detector covers a different portion of the distance-of-flight spectrum and ions are detected simultaneously at the two detectors. The total flight distance covered by the two detectors is 106 mm and simulates DOF detection across a broad mass range.

Results: DOFMS theory predicts that ions of all m/z values are focused at a single flight time, but at m/z-dependent flight distances. Therefore, ions that are detected across a wide portion of the DOF axis should all yield the same peak widths. With a focal-plane camera detector and a micro-channel plate/phosphor-screen detection assembly, we found simultaneous, uniform focus of (40)Ar(2)(+) and of (65)Cu(+) and (63)Cu(+) with the ions spread 82 mm across the DOF axis. This detection length, combined with the current instrument geometry, allows for a simultaneously detectable m/z value of 4:3 (high mass-to-low mass).

Conclusions: These results are the first experimental verification that constant-momentum acceleration (CMA)-DOFMS provides energy focus across an extended detection length. Evidence presented demonstrates that DOFMS is amenable to detection with (at least) a 100-mm detector surface. These results indicate that DOFMS is well suited for detection of broader mass ranges.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.6379DOI Listing
November 2012

Distance-of-flight mass spectrometry: a new paradigm for mass separation and detection.

Annu Rev Anal Chem (Palo Alto Calif) 2012 9;5:487-504. Epub 2012 Apr 9.

Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131-1096, USA.

Distance-of-flight mass spectrometry (DOFMS) offers the advantages of physical separation of ions, array detection of ions, focusing of initial ion energy, great simplicity, and a truly unlimited mass range. DOFMS instrumentation is similar to that of time-of-flight mass spectrometry (TOFMS) and shares its ion-source versatility, batch analysis, and rapid spectral-generation rate. With constant-momentum ion acceleration and an ion mirror, there is a time at which ions of all mass-to-charge values are energy focused at their particular distances along the flight path. A pulsed field orthogonal to the flight path drives the ions to reach the detector array at this specific time. Results from a 0.29-m proof-of-principle instrument verify the theoretically predicted energy focus and demonstrate how the range of mass-to-charge values that impinge on the detector array can be readily changed. DOFMS could be combined sequentially with TOFMS to enable simultaneous scanless tandem mass spectrometry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-anchem-091411-121050DOI Listing
October 2012

Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light-dark diurnal cycles.

BMC Syst Biol 2011 Dec 1;5:194. Epub 2011 Dec 1.

Pacific Northwest National Laboratory, Richland, WA 99352, USA.

Background: Unicellular cyanobacteria of the genus Cyanothece are recognized for their ability to execute nitrogen (N2)-fixation in the dark and photosynthesis in the light. An understanding of these mechanistic processes in an integrated systems context should provide insights into how Cyanothece might be optimized for specialized environments and/or industrial purposes. Systems-wide dynamic proteomic profiling with mass spectrometry (MS) analysis should reveal fundamental insights into the control and regulation of these functions.

Results: To expand upon the current knowledge of protein expression patterns in Cyanothece ATCC51142, we performed quantitative proteomic analysis using partial ("unsaturated") metabolic labeling and high mass accuracy LC-MS analysis. This dynamic proteomic profiling identified 721 actively synthesized proteins with significant temporal changes in expression throughout the light-dark cycles, of which 425 proteins matched with previously characterized cycling transcripts. The remaining 296 proteins contained a cluster of proteins uniquely involved in DNA replication and repair, protein degradation, tRNA synthesis and modification, transport and binding, and regulatory functions. Functional classification of labeled proteins suggested that proteins involved in respiration and glycogen metabolism showed increased expression in the dark cycle together with nitrogenase, suggesting that N2-fixation is mediated by higher respiration and glycogen metabolism. Results indicated that Cyanothece ATCC51142 might utilize alternative pathways for carbon (C) and nitrogen (N) acquisition, particularly, aspartic acid and glutamate as substrates of C and N, respectively. Utilization of phosphoketolase (PHK) pathway for the conversion of xylulose-5P to pyruvate and acetyl-P likely constitutes an alternative strategy to compensate higher ATP and NADPH demand.

Conclusion: This study provides a deeper systems level insight into how Cyanothece ATCC51142 modulates cellular functions to accommodate photosynthesis and N2-fixation within the single cell.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1752-0509-5-194DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3261843PMC
December 2011

Dynamic proteome analysis of Cyanothece sp. ATCC 51142 under constant light.

J Proteome Res 2012 Feb 1;11(2):609-19. Epub 2011 Dec 1.

Pacific Northwest National Laboratory , Richland, Washington 99352, United States.

Understanding the dynamic nature of protein abundances provides insights into protein turnover not readily apparent from conventional, static mass spectrometry measurements. This level of data is particularly informative when surveying protein abundances in biological systems subjected to large perturbations or alterations in environment such as cyanobacteria. Our current analysis expands upon conventional proteomic approaches in cyanobacteria by measuring dynamic changes of the proteome using a (13)C(15)N-l-leucine metabolic labeling in Cyanothece ATCC51142. Metabolically labeled Cyanothece ATCC51142 cells grown under nitrogen-sufficient conditions in continuous light were monitored longitudinally for isotope incorporation over a 48 h period, revealing 414 proteins with dynamic changes in abundances. In particular, proteins involved in carbon fixation, pentose phosphate pathway, cellular protection, redox regulation, protein folding, assembly, and degradation showed higher levels of isotope incorporation, suggesting that these biochemical pathways are important for growth under continuous light. Calculation of relative isotope abundances (RIA) values allowed the measurement of actual active protein synthesis over time for different biochemical pathways under high light exposure. Overall results demonstrated the utility of "non-steady state" pulsed metabolic labeling for systems-wide dynamic quantification of the proteome in Cyanothece ATCC51142 that can also be applied to other cyanobacteria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr200959xDOI Listing
February 2012

Resolution and mass range performance in distance-of-flight mass spectrometry with a multichannel focal-plane camera detector.

Anal Chem 2011 Nov 24;83(22):8552-9. Epub 2011 Oct 24.

Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.

Distance-of-flight mass spectrometry (DOFMS) is a velocity-based mass-separation technique in which ions are separated in space along the plane of a spatially selective detector. In the present work, a solid-state charge-detection array, the focal-plane camera (FPC), was incorporated into the DOFMS platform. Use of the FPC with our DOFMS instrument resulted in improvements in analytical performance, usability, and versatility over a previous generation instrument that employed a microchannel-plate/phosphor DOF detector. Notably, FPC detection provided resolution improvements of at least a factor of 2, with typical DOF linewidths of 300 μm (R((fwhm)) = 1000). The merits of solid-state detection for DOFMS are evaluated, and methods to extend the DOFMS mass range are considered.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac201876yDOI Listing
November 2011

Liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry: preliminary parametric evaluation and figures of merit.

Anal Bioanal Chem 2012 Jan 12;402(1):261-8. Epub 2011 Sep 12.

Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634, USA.

A new, low-power ionization source for the elemental analysis of aqueous solutions has recently been described. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) source operates at relatively low currents (<20 mA) and solution flow rates (<50 μL min(-1)), yielding a relatively simple alternative for atomic mass spectrometry applications. The LS-APGD has been interfaced to what is otherwise an organic, LC-MS mass analyzer, the Thermo Scientific Exactive Orbitrap without any modifications, other than removing the electrospray ionization source supplied with that instrument. A glow discharge is initiated between the surface of the test solution exiting a glass capillary and a metallic counter electrode mounted at a 90° angle and separated by a distance of ~5 mm. As with any plasma-based ionization source, there are key discharge operation and ion sampling parameters that affect the intensity and composition of the derived mass spectra, including signal-to-background ratios. We describe here a preliminary parametric evaluation of the roles of discharge current, solution flow rate, argon sheath gas flow rate, and ion sampling distance as they apply on this mass analyzer system. A cursive evaluation of potential matrix effects due to the presence of easily ionized elements indicate that sodium concentrations of up to 50 μg mL(-1) generally cause suppressions of less than 50%, dependant upon the analyte species. Based on the results of this series of studies, preliminary limits of detection (LOD) have been established through the generation of calibration functions. While solution-based concentration LOD levels of 0.02-2 μg mL(-1) are not impressive on the surface, the fact that they are determined via discrete 5 μL injections leads to mass-based detection limits at picogram to single-nanogram levels. The overhead costs associated with source operation (10 W d.c. power, solution flow rates of <50 μL min(-1), and gas flow rates <10 mL min(-1)) are very attractive. While further optimization in the source design is suggested here, it is believed that the LS-APGD ion source may present a practical alternative to inductively coupled plasma sources typically employed in elemental mass spectrometry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-011-5359-7DOI Listing
January 2012