Publications by authors named "David Milewski"

14 Publications

  • Page 1 of 1

Immuno-transcriptomic profiling of extracranial pediatric solid malignancies.

Cell Rep 2021 Nov;37(8):110047

University of Toronto Musculoskeletal Oncology Unit, Sinai Health System; Department of Surgery, University of Toronto, Toronto, ON, Canada.

We perform an immunogenomics analysis utilizing whole-transcriptome sequencing of 657 pediatric extracranial solid cancer samples representing 14 diagnoses, and additionally utilize transcriptomes of 131 pediatric cancer cell lines and 147 normal tissue samples for comparison. We describe patterns of infiltrating immune cells, T cell receptor (TCR) clonal expansion, and translationally relevant immune checkpoints. We find that tumor-infiltrating lymphocytes and TCR counts vary widely across cancer types and within each diagnosis, and notably are significantly predictive of survival in osteosarcoma patients. We identify potential cancer-specific immunotherapeutic targets for adoptive cell therapies including cell-surface proteins, tumor germline antigens, and lineage-specific transcription factors. Using an orthogonal immunopeptidomics approach, we find several potential immunotherapeutic targets in osteosarcoma and Ewing sarcoma and validated PRAME as a bona fide multi-pediatric cancer target. Importantly, this work provides a critical framework for immune targeting of extracranial solid tumors using parallel immuno-transcriptomic and -peptidomic approaches.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2021.110047DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642810PMC
November 2021

Proteogenomic Analysis Unveils the HLA Class I-Presented Immunopeptidome in Melanoma and EGFR-Mutant Lung Adenocarcinoma.

Mol Cell Proteomics 2021 Aug 13;20:100136. Epub 2021 Aug 13.

Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA; Bristol-Myers Squibb, Lawrenceville, New Jersey, USA. Electronic address:

Immune checkpoint inhibitors and adoptive lymphocyte transfer-based therapies have shown great therapeutic potential in cancers with high tumor mutational burden (TMB), such as melanoma, but not in cancers with low TMB, such as mutant epidermal growth factor receptor (EGFR)-driven lung adenocarcinoma. Precision immunotherapy is an unmet need for most cancers, particularly for cancers that respond inadequately to immune checkpoint inhibitors. Here, we employed large-scale MS-based proteogenomic profiling to identify potential immunogenic human leukocyte antigen (HLA) class I-presented peptides in melanoma and EGFR-mutant lung adenocarcinoma. Similar numbers of peptides were identified from both tumor types. Cell line and patient-specific databases (DBs) were constructed using variants identified from whole-exome sequencing. A de novo search algorithm was used to interrogate the HLA class I immunopeptidome MS data. We identified 12 variant peptides and several classes of tumor-associated antigen-derived peptides. We constructed a cancer germ line (CG) antigen DB with 285 antigens. This allowed us to identify 40 class I-presented CG antigen-derived peptides. The class I immunopeptidome comprised more than 1000 post-translationally modified (PTM) peptides representing 58 different PTMs, underscoring the critical role PTMs may play in HLA binding. Finally, leveraging de novo search algorithm and an annotated long noncoding RNA (lncRNA) DB, we developed a novel lncRNA-encoded peptide discovery pipeline to identify 44 lncRNA-derived peptides that are presented by class I. We validated tandem MS spectra of select variant, CG antigen, and lncRNA-derived peptides using synthetic peptides and performed HLA class I-binding assays to demonstrate binding to class I proteins. In summary, we provide direct evidence of HLA class I presentation of a large number of variant and tumor-associated peptides in both low and high TMB cancer. These results can potentially be useful for precision immunotherapies, such as vaccine or adoptive cell therapies in melanoma and EGFR-mutant lung cancers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcpro.2021.100136DOI Listing
August 2021

Targeting EYA3 in Ewing Sarcoma Retards Tumor Growth and Angiogenesis.

Mol Cancer Ther 2021 05 1;20(5):803-815. Epub 2021 Mar 1.

Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.

, the most common fusion gene in Ewing sarcoma, upregulates expression of the Eyes Absent 3 (EYA3) transactivator-phosphatase protein. The purpose of this study was to investigate molecular and cellular mechanisms through which EYA3 might promote Ewing sarcoma tumor growth and to determine whether the EYA3 tyrosine phosphatase activity represents a viable therapeutic target. We used genetic and pharmacologic modulation of EYA3 in cell line-based xenografts to examine how loss of EYA3 tyrosine phosphatase activity affects tumor growth and angiogenesis. Molecular mechanisms were evaluated and through analyses of tumor tissue and multicellular tumor spheroids. Our results show that both loss of EYA3 in Ewing sarcoma cells and pharmacologic inhibition of the EYA3 tyrosine phosphatase activity inhibit tumor growth and tumor angiogenesis. EYA3 regulates levels of VEGFA in Ewing tumors, as well as promoting DNA damage repair and survival of Ewing sarcoma tumor cells. Target engagement is demonstrated in tumor tissue through elevated levels of the EYA3 substrate H2AX-pY142 upon loss of EYA3 or with Benzarone treatment. The efficacy of EYA3 tyrosine phosphatase inhibition in attenuating tumor growth and angiogenesis is corroborated in an Ewing sarcoma patient-derived tumor xenograft. Together, the results presented here validate EYA3 as a target for the development of novel Ewing sarcoma therapeutic strategies, and set the stage for evaluating the efficacy of combining the antiangiogenic and anti-cell survival effects of EYA3 inhibition with cytotoxic chemotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-20-0749DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102334PMC
May 2021

FOXF1 is required for the oncogenic properties of PAX3-FOXO1 in rhabdomyosarcoma.

Oncogene 2021 03 24;40(12):2182-2199. Epub 2021 Feb 24.

Division of Pulmonary Biology, The Perinatal Institute of Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

The PAX3-FOXO1 fusion protein is the key oncogenic driver in fusion positive rhabdomyosarcoma (FP-RMS), an aggressive soft tissue malignancy with a particularly poor prognosis. Identifying key downstream targets of PAX3-FOXO1 will provide new therapeutic opportunities for treatment of FP-RMS. Herein, we demonstrate that Forkhead Box F1 (FOXF1) transcription factor is uniquely expressed in FP-RMS and is required for FP-RMS tumorigenesis. The PAX3-FOXO1 directly binds to FOXF1 enhancers and induces FOXF1 gene expression. CRISPR/Cas9 mediated inactivation of either FOXF1 coding sequence or FOXF1 enhancers suppresses FP-RMS tumorigenesis even in the presence of PAX3-FOXO1 oncogene. Knockdown or genetic knockout of FOXF1 induces myogenic differentiation in PAX3-FOXO1-positive FP-RMS. Over-expression of FOXF1 decreases myogenic differentiation in primary human myoblasts. In FP-RMS tumor cells, FOXF1 protein binds chromatin near enhancers associated with FP-RMS gene signature. FOXF1 cooperates with PAX3-FOXO1 and E-box transcription factors MYOD1 and MYOG to regulate FP-RMS-specific gene expression. Altogether, FOXF1 functions downstream of PAX3-FOXO1 to promote FP-RMS tumorigenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41388-021-01694-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8005492PMC
March 2021

Interaction between SNAI2 and MYOD enhances oncogenesis and suppresses differentiation in Fusion Negative Rhabdomyosarcoma.

Nat Commun 2021 01 8;12(1):192. Epub 2021 Jan 8.

Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA.

Rhabdomyosarcoma (RMS) is an aggressive pediatric malignancy of the muscle, that includes Fusion Positive (FP)-RMS harboring PAX3/7-FOXO1 and Fusion Negative (FN)-RMS commonly with RAS pathway mutations. RMS express myogenic master transcription factors MYOD and MYOG yet are unable to terminally differentiate. Here, we report that SNAI2 is highly expressed in FN-RMS, is oncogenic, blocks myogenic differentiation, and promotes growth. MYOD activates SNAI2 transcription via super enhancers with striped 3D contact architecture. Genome wide chromatin binding analysis demonstrates that SNAI2 preferentially binds enhancer elements and competes with MYOD at a subset of myogenic enhancers required for terminal differentiation. SNAI2 also suppresses expression of a muscle differentiation program modulated by MYOG, MEF2, and CDKN1A. Further, RAS/MEK-signaling modulates SNAI2 levels and binding to chromatin, suggesting that the differentiation blockade by oncogenic RAS is mediated in part by SNAI2. Thus, an interplay between SNAI2, MYOD, and RAS prevents myogenic differentiation and promotes tumorigenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-20386-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794422PMC
January 2021

FOXM1 nuclear transcription factor translocates into mitochondria and inhibits oxidative phosphorylation.

Mol Biol Cell 2020 06 29;31(13):1411-1424. Epub 2020 Apr 29.

Perinatal Institute and Division of Neonatology, Perinatal and Pulmonary Biology.

Forkhead box M1 (FOXM1), a nuclear transcription factor that activates cell cycle regulatory genes, is highly expressed in a majority of human cancers. The function of FOXM1 independent of nuclear transcription is unknown. In the present study, we found the FOXM1 protein inside the mitochondria. Using site-directed mutagenesis, we generated FOXM1 mutant proteins that localized to distinct cellular compartments, uncoupling the nuclear and mitochondrial functions of FOXM1. Directing FOXM1 into the mitochondria decreased mitochondrial mass, membrane potential, respiration, and electron transport chain (ETC) activity. In mitochondria, the FOXM1 directly bound to and increased the pentatricopeptide repeat domain 1 (PTCD1) protein, a mitochondrial leucine-specific tRNA binding protein that inhibits leucine-rich ETC complexes. Mitochondrial FOXM1 did not change cellular proliferation. Thus, FOXM1 translocates into mitochondria and inhibits mitochondrial respiration by increasing PTCD1. We identify a new paradigm that FOXM1 regulates mitochondrial homeostasis in a process independent of nuclear transcription.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1091/mbc.E19-07-0413DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353143PMC
June 2020

Loss of FOXM1 in macrophages promotes pulmonary fibrosis by activating p38 MAPK signaling pathway.

PLoS Genet 2020 04 9;16(4):e1008692. Epub 2020 Apr 9.

Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America.

Idiopathic pulmonary fibrosis (IPF) is a chronic disease with high mortality and is refractory to treatment. Pulmonary macrophages can both promote and repress fibrosis, however molecular mechanisms regulating macrophage functions during fibrosis remain poorly understood. FOXM1 is a transcription factor and is not expressed in quiescent lungs. Herein, we show that FOXM1 is highly expressed in pulmonary macrophages within fibrotic lungs of IPF patients and mouse fibrotic lungs. Macrophage-specific deletion of Foxm1 in mice (myFoxm1-/-) exacerbated pulmonary fibrosis. Inactivation of FOXM1 in vivo and in vitro increased p38 MAPK signaling in macrophages and decreased DUSP1, a negative regulator of p38 MAPK pathway. FOXM1 directly activated Dusp1 promoter. Overexpression of DUSP1 in FOXM1-deficient macrophages prevented activation of p38 MAPK pathway. Adoptive transfer of wild-type monocytes to myFoxm1-/- mice alleviated bleomycin-induced fibrosis. Altogether, contrary to known pro-fibrotic activities in lung epithelium and fibroblasts, FOXM1 has anti-fibrotic function in macrophages by regulating p38 MAPK.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1008692DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7173935PMC
April 2020

IODVA1, a guanidinobenzimidazole derivative, targets Rac activity and Ras-driven cancer models.

PLoS One 2020 12;15(3):e0229801. Epub 2020 Mar 12.

Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, Ohio, Unites States of America.

We report the synthesis and preliminary characterization of IODVA1, a potent small molecule that is active in xenograft mouse models of Ras-driven lung and breast cancers. In an effort to inhibit oncogenic Ras signaling, we combined in silico screening with inhibition of proliferation and colony formation of Ras-driven cells. NSC124205 fulfilled all criteria. HPLC analysis revealed that NSC124205 was a mixture of at least three compounds, from which IODVA1 was determined to be the active component. IODVA1 decreased 2D and 3D cell proliferation, cell spreading and ruffle and lamellipodia formation through downregulation of Rac activity. IODVA1 significantly impaired xenograft tumor growth of Ras-driven cancer cells with no observable toxicity. Immuno-histochemistry analysis of tumor sections suggests that cell death occurs by increased apoptosis. Our data suggest that IODVA1 targets Rac signaling to induce death of Ras-transformed cells. Therefore, IODVA1 holds promise as an anti-tumor therapeutic agent.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229801PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067412PMC
July 2020

The FOXM1 Inhibitor RCM-1 Decreases Carcinogenesis and Nuclear β-Catenin.

Mol Cancer Ther 2019 07 30;18(7):1217-1229. Epub 2019 Apr 30.

Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.

The oncogenic transcription factor FOXM1 has been previously shown to play a critical role in carcinogenesis by inducing cellular proliferation in multiple cancer types. A small-molecule compound, Robert Costa Memorial drug-1 (RCM-1), has been recently identified from high-throughput screen as an inhibitor of FOXM1 and in mouse model of allergen-mediated lung inflammation. In the present study, we examined antitumor activities of RCM-1 using tumor models. Treatment with RCM-1 inhibited tumor cell proliferation as evidenced by increased cell-cycle duration. Confocal imaging of RCM-1-treated tumor cells indicated that delay in cellular proliferation was concordant with inhibition of FOXM1 nuclear localization in these cells. RCM-1 reduced the formation and growth of tumor cell colonies in the colony formation assay. In animal models, RCM-1 treatment inhibited growth of mouse rhabdomyosarcoma Rd76-9, melanoma B16-F10, and human H2122 lung adenocarcinoma. RCM-1 decreased FOXM1 protein in the tumors, reduced tumor cell proliferation, and increased tumor cell apoptosis. RCM-1 decreased protein levels and nuclear localization of β-catenin, and inhibited protein-protein interaction between β-catenin and FOXM1 in cultured tumor cells and Altogether, our study provides important evidence of antitumor potential of the small-molecule compound RCM-1, suggesting that RCM-1 can be a promising candidate for anticancer therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-18-0709DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7341442PMC
July 2019

Targeted Inhibition of the Dual Specificity Phosphatases DUSP1 and DUSP6 Suppress MPNST Growth via JNK.

Clin Cancer Res 2019 07 1;25(13):4117-4127. Epub 2019 Apr 1.

Cincinnati Children's Hospital Medical Center, Cincinnati, OH.

Purpose: In neurofibromatosis type 1 (NF1) and in highly aggressive malignant peripheral nerve sheath tumors (MPNSTs), constitutively active RAS-GTP and increased MAPK signaling are important in tumorigenesis. Dual specificity phosphatases (DUSPs) are negative regulators of MAPK signaling that dephosphorylate p38, JNK, and ERK in different settings. Although often acting as tumor suppressors, DUSPs may also act as oncogenes, helping tumor cells adapt to high levels of MAPK signaling. We hypothesized that inhibiting DUSPs might be selectively toxic to cells from NF1-driven tumors.

Experimental Design: We examined DUSP gene and protein expression in neurofibroma and MPNSTs. We used small hairpin RNA (shRNA) to knock down DUSP1 and DUSP6 to evaluate cell growth, downstream MAPK signaling, and mechanisms of action. We evaluated the DUSP inhibitor, (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI), in MPNST cell lines and in cell-line and patient-derived MPNST xenografts.

Results: DUSP1 and DUSP6 are expressed in NF1-deleted tumors. Knockdown of DUSP1 and DUSP6, alone or in combination, reduced MPNST cell growth and led to ERK and JNK hyperactivation increasing downstream TP53 and p-ATM. The DUSP inhibitor, BCI, diminished the survival of NF1-deleted Schwann cells and MPNST cell lines through activation of JNK. , treatment of an established cell-line xenograft or a novel patient-derived xenograft (PDX) of MPNSTs with BCI increased ERK and JNK activation, caused tumor necrosis and fibrosis, and reduced tumor volume in one model.

Conclusions: Targeting DUSP1 and DUSP6 genetically or with BCI effectively inhibits MPNST cell growth and promotes cell death, and in xenograft models. The data support further investigation of DUSP inhibition in MPNSTs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-18-3224DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6606396PMC
July 2019

FOXF1 Inhibits Pulmonary Fibrosis by Preventing CDH2-CDH11 Cadherin Switch in Myofibroblasts.

Cell Rep 2018 Apr;23(2):442-458

Divisions of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Hospital Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, USA. Electronic address:

Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant accumulation of collagen-secreting myofibroblasts. Development of effective therapies is limited due to incomplete understanding of molecular mechanisms regulating myofibroblast expansion. FOXF1 transcription factor is expressed in resident lung fibroblasts, but its role in lung fibrosis remains unknown due to the lack of genetic mouse models. Through comprehensive analysis of human IPF genomics data, lung biopsies, and transgenic mice with fibroblast-specific inactivation of FOXF1, we show that FOXF1 inhibits pulmonary fibrosis. FOXF1 deletion increases myofibroblast invasion and collagen secretion and promotes a switch from N-cadherin (CDH2) to Cadherin-11 (CDH11), which is a critical step in the acquisition of the pro-fibrotic phenotype. FOXF1 directly binds to Cdh2 and Cdh11 promoters and differentially regulates transcription of these genes. Re-expression of CDH2 or inhibition of CDH11 in FOXF1-deficient cells reduces myofibroblast invasion in vitro. FOXF1 inhibits pulmonary fibrosis by regulating a switch from CDH2 to CDH11 in lung myofibroblasts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2018.03.067DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5947867PMC
April 2018

FOXM1 activates AGR2 and causes progression of lung adenomas into invasive mucinous adenocarcinomas.

PLoS Genet 2017 12 21;13(12):e1007097. Epub 2017 Dec 21.

Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America.

Lung cancer remains one of the most prominent public health challenges, accounting for the highest incidence and mortality among all human cancers. While pulmonary invasive mucinous adenocarcinoma (PIMA) is one of the most aggressive types of non-small cell lung cancer, transcriptional drivers of PIMA remain poorly understood. In the present study, we found that Forkhead box M1 transcription factor (FOXM1) is highly expressed in human PIMAs and associated with increased extracellular mucin deposition and the loss of NKX2.1. To examine consequences of FOXM1 expression in tumor cells in vivo, we employed an inducible, transgenic mouse model to express an activated FOXM1 transcript in urethane-induced benign lung adenomas. FOXM1 accelerated tumor growth, induced progression from benign adenomas to invasive, metastatic adenocarcinomas, and induced SOX2, a marker of poorly differentiated tumor cells. Adenocarcinomas in FOXM1 transgenic mice expressed increased MUC5B and MUC5AC, and reduced NKX2.1, which are characteristics of mucinous adenocarcinomas. Expression of FOXM1 in KrasG12D transgenic mice increased the mucinous phenotype in KrasG12D-driven lung tumors. Anterior Gradient 2 (AGR2), an oncogene critical for intracellular processing and packaging of mucins, was increased in mouse and human PIMAs and was associated with FOXM1. FOXM1 directly bound to and transcriptionally activated human AGR2 gene promoter via the -257/-247 bp region. Finally, using orthotopic xenografts we demonstrated that inhibition of either FOXM1 or AGR2 in human PIMAs inhibited mucinous characteristics, and reduced tumor growth and invasion. Altogether, FOXM1 is necessary and sufficient to induce mucinous phenotypes in lung tumor cells in vivo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1007097DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5755924PMC
December 2017

FoxF1 and FoxF2 transcription factors synergistically promote rhabdomyosarcoma carcinogenesis by repressing transcription of p21 CDK inhibitor.

Oncogene 2017 02 18;36(6):850-862. Epub 2016 Jul 18.

Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229.

The role of Forkhead Box F1 (FoxF1) transcription factor in carcinogenesis is not well characterized. Depending on tissue and histological type of cancer, FoxF1 has been shown to be either an oncogene or a tumor suppressor. Alveolar rhabdomyosarcoma (RMS) is the most aggressive pediatric soft-tissue sarcoma. Although FoxF1 is highly expressed in alveolar RMS, the functional role of FoxF1 in RMS is unknown. The present study demonstrates that expression of FoxF1 and its closely related transcription factor FoxF2 are essential for RMS tumor growth. Depletion of FoxF1 or FoxF2 in RMS cells decreased tumor growth in orthotopic mouse models of RMS. The decreased tumorigenesis was associated with reduced tumor cell proliferation. Cell cycle regulatory proteins Cdk2, Cdk4/6, Cyclin D1 and Cyclin E2 were decreased in FoxF1- and FoxF2-deficient RMS tumors. Depletion of either FoxF1 or FoxF2 delayed G1-S cell cycle progression, decreased levels of phosphorylated retinoblastoma protein (Rb) and increased protein levels of the CDK inhibitors, p21 and p27. Depletion of both FoxF1 and FoxF2 in tumor cells completely abrogated RMS tumor growth in mice. Overexpression of either FoxF1 or FoxF2 in tumor cells was sufficient to increase tumor growth in orthotopic RMS mouse model. FoxF1 and FoxF2 directly bound to and repressed transcriptional activity of p21 promoter through -556/-545 bp region, but did not affect p27 transcription. Knockdown of p21 restored cell cycle progression in the FoxF1- or FoxF2-deficient tumor cells. Altogether, FoxF1 and FoxF2 promoted RMS tumorigenesis by inducing tumor cell proliferation via transcriptional repression of p21 gene promoter. Because of the robust oncogenic activity in RMS tumors, FoxF1 and FoxF2 may represent promising targets for anti-tumor therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/onc.2016.254DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5243941PMC
February 2017

The transcription factor FOXF1 promotes prostate cancer by stimulating the mitogen-activated protein kinase ERK5.

Sci Signal 2016 05 10;9(427):ra48. Epub 2016 May 10.

Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.

Forkhead box F1 (FOXF1) is a stromal transcription factor that is not expressed in epithelial cells of normal prostate tissue. The role of FOXF1 in cancer is conflicting; its loss in some cancers suggests a tumor suppressive function, but its abundance in others is associated with protumorigenic and metastatic traits. Extracellular signal-regulated kinase 5 (ERK5) is associated with advanced-stage prostate adenocarcinoma (PCa) in patients. We detected a population of FOXF1-positive tumor cells in aggressive mouse and human PCa. Using two murine orthotopic models of PCa, we found that overexpression of FOXF1 in Myc-CaP and TRAMP prostate tumor cells induced tumor growth in the prostate and progression to peritoneal metastasis. Increased growth of FOXF1-positive prostate tumors was associated with increased phosphorylation of ERK5, a member of the mitogen-activated protein kinase (MAPK) family. FOXF1 transcriptionally induced and directly bound to promoter regions of genes encoding the kinases MAP3K2 and WNK1, which promoted the phosphorylation and activation of ERK5. Knockdown of ERK5 or both MAP3K2 and WNK1 in FOXF1-overexpressing PCa cells reduced cell proliferation in culture and suppressed tumor growth and tumor metastasis when implanted into mice. In human tumors, FOXF1 expression correlated positively with that of MAP3K2 and WNK1 Thus, in contrast to some tumors where FOXF1 may function as a tumor suppressor, FOXF1 promotes prostate tumor growth and progression by activating ERK5 signaling. Our results also indicate that ERK5 may be a new therapeutic target in patients with FOXF1-positive PCa.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scisignal.aad5582DOI Listing
May 2016
-->