Publications by authors named "David C Liewald"

70 Publications

Identifying nootropic drug targets via large-scale cognitive GWAS and transcriptomics.

Neuropsychopharmacology 2021 09 25;46(10):1788-1801. Epub 2021 May 25.

Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Broad-based cognitive deficits are an enduring and disabling symptom for many patients with severe mental illness, and these impairments are inadequately addressed by current medications. While novel drug targets for schizophrenia and depression have emerged from recent large-scale genome-wide association studies (GWAS) of these psychiatric disorders, GWAS of general cognitive ability can suggest potential targets for nootropic drug repurposing. Here, we (1) meta-analyze results from two recent cognitive GWAS to further enhance power for locus discovery; (2) employ several complementary transcriptomic methods to identify genes in these loci that are credibly associated with cognition; and (3) further annotate the resulting genes using multiple chemoinformatic databases to identify "druggable" targets. Using our meta-analytic data set (N = 373,617), we identified 241 independent cognition-associated loci (29 novel), and 76 genes were identified by 2 or more methods of gene identification. Actin and chromatin binding gene sets were identified as novel pathways that could be targeted via drug repurposing. Leveraging our transcriptomic and chemoinformatic databases, we identified 16 putative genes targeted by existing drugs potentially available for cognitive repurposing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41386-021-01023-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357785PMC
September 2021

Association of common genetic variants with brain microbleeds: A genome-wide association study.

Neurology 2020 12 10;95(24):e3331-e3343. Epub 2020 Sep 10.

From the Departments of Epidemiology (M.J.K., H.H.H.A., D.V., S.J.v.d.L., P.Y., M.W.V., N.A., C.M.v.D., M.A.I.), Radiology and Nuclear Medicine (H.H.H.A., P.Y., A.v.d.L., M.W.V.), and Clinical Genetics (H.H.H.A.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Stroke Research Group, Department of Clinical Neurosciences (D.L., M.T., J.L., D.J.T., H.S.M.), University of Cambridge, UK; Department of Neurology (J.R.J.R., C.L.S., J.J.H., A.S.B., C.D., S. Seshadri), Boston University School of Medicine; The Framingham Heart Study (J.R.J.R., C.L.S., J.J.H., A.S.B., S. Seshadri), MA; Department of Biostatistics (A.V.S.), University of Michigan, Ann Arbor; Icelandic Heart Association (A.V.S., S. Sigurdsson, V.G.), Kopavogur, Iceland; Brown Foundation Institute of Molecular Medicine, McGovern Medical School (M.F.), and Human Genetics Center, School of Public Health (M.F.), University of Texas Health Science Center at Houston; Clinical Division of Neurogeriatrics, Department of Neurology (E.H., L.P., R.S.), Institute for Medical Informatics, Statistics and Documentation (E.H.), and Gottfried Schatz Research Center, Department of Molecular Biology and Biochemistry (Y.S., H.S.), Medical University of Graz, Austria; Center of Cerebrovascular Diseases, Department of Neurology (J.L.), West China Hospital, Sichuan University, Chengdu; Stroke Research Centre, Queen Square Institute of Neurology (I.C.H., D.W., H.H., D.J.W.), University College London, UK; Department of Neurosurgery (I.C.H.), Klinikum rechts der Isar, University of Munich, Germany; Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology (M.L., D.C.M.L., M.E.B., I.J.D., J.M.W.), and Centre for Clinical Brain Sciences, Edinburgh Imaging, UK Dementia Research Institute (M.E.B., J.M.W.), University of Edinburgh, UK; Department of Internal Medicine, Section of Gerontology and Geriatrics (S.T.), Department of Cardiology (S.T., J.v.d.G., J.W.J.), Section of Molecular Epidemiology, Biomedical Data Sciences (E.B.v.d.A., M.B., P.E.S.), Leiden Computational Biology Center, Biomedical Data Sciences (E.B.v.d.A.), Department of Radiology (J.v.d.G.), and Einthoven Laboratory for Experimental Vascular Medicine (J.W.J.), Leiden University Medical Center, the Netherlands; Department of Neurology (A.-K.G., N.S.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Memory Aging and Cognition Center (S.H., C.C.), National University Health System, Singapore; Department of Pharmacology (S.H., C.C.) and Saw Swee Hock School of Public Health (S.H.), National University of Singapore and National University Health System, Singapore; Pattern Recognition & Bioinformatics (E.B.v.d.A.), Delft University of Technology, the Netherlands; Department of Biostatistics (S.L., J.J.H., Q.Y., A.S.B.), Boston University School of Public Health, MA; Department of Radiology (C.R.J., K.K.), Mayo Clinic, Rochester, MN; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., S. Seshadri), UT Health San Antonio, TX; Department of Medicine, Division of Geriatrics (B.G.W., T.H.M), and Memory Impairment and Neurodegenerative Dementia (MIND) Center (T.H.M.), University of Mississippi Medical Center, Jackson; Singapore Eye Research Institute (C.Y.C., J.Y.K., T.Y.W.); Department of Neuroradiology (Z.M., J.M.W.), NHS Lothian, Edinburgh; Institute of Cardiovascular and Medical Sciences (D.J.S.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Division of Cerebrovascular Neurology (R.F.G.), Johns Hopkins University, Baltimore, MD; Department of Neuroradiology (A.D.M.), Atkinson Morley Neurosciences Centre, St George's NHS Foundation Trust, London, UK; Department of Neurology (C.D.), University of California at Davis; Nuffield Department of Population Health (C.M.v.D.), University of Oxford, UK; Laboratory of Epidemiology and Population Sciences (L.J.L.), National Institute on Aging, Baltimore, MD; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik, Iceland.

Objective: To identify common genetic variants associated with the presence of brain microbleeds (BMBs).

Methods: We performed genome-wide association studies in 11 population-based cohort studies and 3 case-control or case-only stroke cohorts. Genotypes were imputed to the Haplotype Reference Consortium or 1000 Genomes reference panel. BMBs were rated on susceptibility-weighted or T2*-weighted gradient echo MRI sequences, and further classified as lobar or mixed (including strictly deep and infratentorial, possibly with lobar BMB). In a subset, we assessed the effects of ε2 and ε4 alleles on BMB counts. We also related previously identified cerebral small vessel disease variants to BMBs.

Results: BMBs were detected in 3,556 of the 25,862 participants, of which 2,179 were strictly lobar and 1,293 mixed. One locus in the region reached genome-wide significance for its association with BMB (lead rs769449; odds ratio [OR] [95% confidence interval (CI)] 1.33 [1.21-1.45]; = 2.5 × 10). ε4 alleles were associated with strictly lobar (OR [95% CI] 1.34 [1.19-1.50]; = 1.0 × 10) but not with mixed BMB counts (OR [95% CI] 1.04 [0.86-1.25]; = 0.68). ε2 alleles did not show associations with BMB counts. Variants previously related to deep intracerebral hemorrhage and lacunar stroke, and a risk score of cerebral white matter hyperintensity variants, were associated with BMB.

Conclusions: Genetic variants in the region are associated with the presence of BMB, most likely due to the ε4 allele count related to a higher number of strictly lobar BMBs. Genetic predisposition to small vessel disease confers risk of BMB, indicating genetic overlap with other cerebral small vessel disease markers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000010852DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836652PMC
December 2020

Multi-method genome- and epigenome-wide studies of inflammatory protein levels in healthy older adults.

Genome Med 2020 07 8;12(1):60. Epub 2020 Jul 8.

Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.

Background: The molecular factors which control circulating levels of inflammatory proteins are not well understood. Furthermore, association studies between molecular probes and human traits are often performed by linear model-based methods which may fail to account for complex structure and interrelationships within molecular datasets.

Methods: In this study, we perform genome- and epigenome-wide association studies (GWAS/EWAS) on the levels of 70 plasma-derived inflammatory protein biomarkers in healthy older adults (Lothian Birth Cohort 1936; n = 876; Olink® inflammation panel). We employ a Bayesian framework (BayesR+) which can account for issues pertaining to data structure and unknown confounding variables (with sensitivity analyses using ordinary least squares- (OLS) and mixed model-based approaches).

Results: We identified 13 SNPs associated with 13 proteins (n = 1 SNP each) concordant across OLS and Bayesian methods. We identified 3 CpG sites spread across 3 proteins (n = 1 CpG each) that were concordant across OLS, mixed-model and Bayesian analyses. Tagged genetic variants accounted for up to 45% of variance in protein levels (for MCP2, 36% of variance alone attributable to 1 polymorphism). Methylation data accounted for up to 46% of variation in protein levels (for CXCL10). Up to 66% of variation in protein levels (for VEGFA) was explained using genetic and epigenetic data combined. We demonstrated putative causal relationships between CD6 and IL18R1 with inflammatory bowel disease and between IL12B and Crohn's disease.

Conclusions: Our data may aid understanding of the molecular regulation of the circulating inflammatory proteome as well as causal relationships between inflammatory mediators and disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13073-020-00754-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346642PMC
July 2020

Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci.

Mol Psychiatry 2021 06 5;26(6):2111-2125. Epub 2020 May 5.

Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.

Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, "Some College" (yes/no) and "Graduated College" (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-020-0719-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641978PMC
June 2021

The effect of network thresholding and weighting on structural brain networks in the UK Biobank.

Neuroimage 2020 05 10;211:116443. Epub 2020 Jan 10.

Lothian Birth Cohorts group, The University of Edinburgh, Edinburgh, UK; Department of Psychology, The University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK.

Whole-brain structural networks can be constructed using diffusion MRI and probabilistic tractography. However, measurement noise and the probabilistic nature of the tracking procedure result in an unknown proportion of spurious white matter connections. Faithful disentanglement of spurious and genuine connections is hindered by a lack of comprehensive anatomical information at the network-level. Therefore, network thresholding methods are widely used to remove ostensibly false connections, but it is not yet clear how different thresholding strategies affect basic network properties and their associations with meaningful demographic variables, such as age. In a sample of 3153 generally healthy volunteers from the UK Biobank Imaging Study (aged 44-77 years), we constructed whole-brain structural networks and applied two principled network thresholding approaches (consistency and proportional thresholding). These were applied over a broad range of threshold levels across six alternative network weightings (streamline count, fractional anisotropy, mean diffusivity and three novel weightings from neurite orientation dispersion and density imaging) and for four common network measures (mean edge weight, characteristic path length, network efficiency and network clustering coefficient). We compared network measures against age associations and found that: 1) measures derived from unthresholded matrices yielded the weakest age-associations (0.033 ​≤ ​|β| ​≤ ​0.409); and 2) the most commonly-used level of proportional-thresholding from the literature (retaining 68.7% of all possible connections) yielded significantly weaker age-associations (0.070 ​≤ ​|β| ​≤ ​0.406) than the consistency-based approach which retained only 30% of connections (0.140 ​≤ ​|β| ​≤ ​0.409). However, we determined that the stringency of the threshold was a stronger determinant of the network-age association than the choice of threshold method and the two thresholding approaches identified a highly overlapping set of connections (ICC ​= ​0.84), when matched at 70% network sparsity. Generally, more stringent thresholding resulted in more age-sensitive network measures in five of the six network weightings, except at the highest levels of sparsity (>90%), where crucial connections were then removed. At two commonly-used threshold levels, the age-associations of the connections that were discarded (mean β ​≤ ​|0.068|) were significantly smaller in magnitude than the corresponding age-associations of the connections that were retained (mean β ​≤ ​|0.219|, p ​< ​0.001, uncorrected). Given histological evidence of widespread degeneration of structural brain connectivity with increasing age, these results indicate that stringent thresholding methods may be most accurate in identifying true white matter connections.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2019.116443DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085460PMC
May 2020

Genome-wide analysis identifies molecular systems and 149 genetic loci associated with income.

Nat Commun 2019 12 16;10(1):5741. Epub 2019 Dec 16.

Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.

Socioeconomic position (SEP) is a multi-dimensional construct reflecting (and influencing) multiple socio-cultural, physical, and environmental factors. In a sample of 286,301 participants from UK Biobank, we identify 30 (29 previously unreported) independent-loci associated with income. Using a method to meta-analyze data from genetically-correlated traits, we identify an additional 120 income-associated loci. These loci show clear evidence of functionality, with transcriptional differences identified across multiple cortical tissues, and links to GABAergic and serotonergic neurotransmission. By combining our genome wide association study on income with data from eQTL studies and chromatin interactions, 24 genes are prioritized for follow up, 18 of which were previously associated with intelligence. We identify intelligence as one of the likely causal, partly-heritable phenotypes that might bridge the gap between molecular genetic inheritance and phenotypic consequence in terms of income differences. These results indicate that, in modern era Great Britain, genetic effects contribute towards some of the observed socioeconomic inequalities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-13585-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915786PMC
December 2019

Increased ultra-rare variant load in an isolated Scottish population impacts exonic and regulatory regions.

PLoS Genet 2019 11 25;15(11):e1008480. Epub 2019 Nov 25.

MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Crewe Road, Edinburgh, United Kingdom.

Human population isolates provide a snapshot of the impact of historical demographic processes on population genetics. Such data facilitate studies of the functional impact of rare sequence variants on biomedical phenotypes, as strong genetic drift can result in higher frequencies of variants that are otherwise rare. We present the first whole genome sequencing (WGS) study of the VIKING cohort, a representative collection of samples from the isolated Shetland population in northern Scotland, and explore how its genetic characteristics compare to a mainland Scottish population. Our analyses reveal the strong contributions played by the founder effect and genetic drift in shaping genomic variation in the VIKING cohort. About one tenth of all high-quality variants discovered are unique to the VIKING cohort or are seen at frequencies at least ten fold higher than in more cosmopolitan control populations. Multiple lines of evidence also suggest relaxation of purifying selection during the evolutionary history of the Shetland isolate. We demonstrate enrichment of ultra-rare VIKING variants in exonic regions and for the first time we also show that ultra-rare variants are enriched within regulatory regions, particularly promoters, suggesting that gene expression patterns may diverge relatively rapidly in human isolates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1008480DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901239PMC
November 2019

Genetic architecture of subcortical brain structures in 38,851 individuals.

Nat Genet 2019 11 21;51(11):1624-1636. Epub 2019 Oct 21.

Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.

Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0511-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055269PMC
November 2019

Pleiotropic Meta-Analysis of Cognition, Education, and Schizophrenia Differentiates Roles of Early Neurodevelopmental and Adult Synaptic Pathways.

Am J Hum Genet 2019 08;105(2):334-350

Centre for Epidemiology, Division of Population Health, Health Services Research and Primary Care, University of Manchester, Manchester M139PL, United Kingdom; School of Healthcare Sciences, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom.

Susceptibility to schizophrenia is inversely correlated with general cognitive ability at both the phenotypic and the genetic level. Paradoxically, a modest but consistent positive genetic correlation has been reported between schizophrenia and educational attainment, despite the strong positive genetic correlation between cognitive ability and educational attainment. Here we leverage published genome-wide association studies (GWASs) in cognitive ability, education, and schizophrenia to parse biological mechanisms underlying these results. Association analysis based on subsets (ASSET), a pleiotropic meta-analytic technique, allowed jointly associated loci to be identified and characterized. Specifically, we identified subsets of variants associated in the expected ("concordant") direction across all three phenotypes (i.e., greater risk for schizophrenia, lower cognitive ability, and lower educational attainment); these were contrasted with variants that demonstrated the counterintuitive ("discordant") relationship between education and schizophrenia (i.e., greater risk for schizophrenia and higher educational attainment). ASSET analysis revealed 235 independent loci associated with cognitive ability, education, and/or schizophrenia at p < 5 × 10. Pleiotropic analysis successfully identified more than 100 loci that were not significant in the input GWASs. Many of these have been validated by larger, more recent single-phenotype GWASs. Leveraging the joint genetic correlations of cognitive ability, education, and schizophrenia, we were able to dissociate two distinct biological mechanisms-early neurodevelopmental pathways that characterize concordant allelic variation and adulthood synaptic pruning pathways-that were linked to the paradoxical positive genetic association between education and schizophrenia. Furthermore, genetic correlation analyses revealed that these mechanisms contribute not only to the etiopathogenesis of schizophrenia but also to the broader biological dimensions implicated in both general health outcomes and psychiatric illness.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2019.06.012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6699140PMC
August 2019

Genome and epigenome wide studies of neurological protein biomarkers in the Lothian Birth Cohort 1936.

Nat Commun 2019 07 18;10(1):3160. Epub 2019 Jul 18.

Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.

Although plasma proteins may serve as markers of neurological disease risk, the molecular mechanisms responsible for inter-individual variation in plasma protein levels are poorly understood. Therefore, we conduct genome- and epigenome-wide association studies on the levels of 92 neurological proteins to identify genetic and epigenetic loci associated with their plasma concentrations (n = 750 healthy older adults). We identify 41 independent genome-wide significant (P < 5.4 × 10) loci for 33 proteins and 26 epigenome-wide significant (P < 3.9 × 10) sites associated with the levels of 9 proteins. Using this information, we identify biological pathways in which putative neurological biomarkers are implicated (neurological, immunological and extracellular matrix metabolic pathways). We also observe causal relationships (by Mendelian randomisation analysis) between changes in gene expression (DRAXIN, MDGA1 and KYNU), or DNA methylation profiles (MATN3, MDGA1 and NEP), and altered plasma protein levels. Together, this may help inform causal relationships between biomarkers and neurological diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-11177-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6639385PMC
July 2019

Author Correction: Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function.

Nat Commun 2019 May 1;10(1):2068. Epub 2019 May 1.

Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.

Christina M. Lill, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this article. This has now been corrected in both the PDF and HTML versions of the article.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-10160-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494826PMC
May 2019

Genetic contributions to two special factors of neuroticism are associated with affluence, higher intelligence, better health, and longer life.

Mol Psychiatry 2020 11 13;25(11):3034-3052. Epub 2019 Mar 13.

Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.

Higher scores on the personality trait of neuroticism, the tendency to experience negative emotions, are associated with worse mental and physical health. Studies examining links between neuroticism and health typically operationalize neuroticism by summing the items from a neuroticism scale. However, neuroticism is made up of multiple heterogeneous facets, each contributing to the effect of neuroticism as a whole. A recent study showed that a 12-item neuroticism scale described one broad trait of general neuroticism and two special factors, one characterizing the extent to which people worry and feel vulnerable, and the other characterizing the extent to which people are anxious and tense. This study also found that, although individuals who were higher on general neuroticism lived shorter lives, individuals whose neuroticism was characterized by worry and vulnerability lived longer lives. Here, we examine the genetic contributions to the two special factors of neuroticism-anxiety/tension and worry/vulnerability-and how they contrast with that of general neuroticism. First, we show that, whereas the polygenic load for neuroticism is associated with the genetic risk of coronary artery disease, lower intelligence, lower socioeconomic status (SES), and poorer self-rated health, the genetic variants associated with high levels of anxiety/tension, and high levels of worry/vulnerability are associated with genetic variants linked to higher SES, higher intelligence, better self-rated health, and longer life. Second, we identify genetic variants that are uniquely associated with these protective aspects of neuroticism. Finally, we show that different neurological pathways are linked to each of these neuroticism phenotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-019-0387-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577854PMC
November 2020

Associations between vascular risk factors and brain MRI indices in UK Biobank.

Eur Heart J 2019 07;40(28):2290-2300

Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, 7 George Square, Edinburgh, UK.

Aims: Several factors are known to increase risk for cerebrovascular disease and dementia, but there is limited evidence on associations between multiple vascular risk factors (VRFs) and detailed aspects of brain macrostructure and microstructure in large community-dwelling populations across middle and older age.

Methods And Results: Associations between VRFs (smoking, hypertension, pulse pressure, diabetes, hypercholesterolaemia, body mass index, and waist-hip ratio) and brain structural and diffusion MRI markers were examined in UK Biobank (N = 9722, age range 44-79 years). A larger number of VRFs was associated with greater brain atrophy, lower grey matter volume, and poorer white matter health. Effect sizes were small (brain structural R2 ≤1.8%). Higher aggregate vascular risk was related to multiple regional MRI hallmarks associated with dementia risk: lower frontal and temporal cortical volumes, lower subcortical volumes, higher white matter hyperintensity volumes, and poorer white matter microstructure in association and thalamic pathways. Smoking pack years, hypertension and diabetes showed the most consistent associations across all brain measures. Hypercholesterolaemia was not uniquely associated with any MRI marker.

Conclusion: Higher levels of VRFs were associated with poorer brain health across grey and white matter macrostructure and microstructure. Effects are mainly additive, converging upon frontal and temporal cortex, subcortical structures, and specific classes of white matter fibres. Though effect sizes were small, these results emphasize the vulnerability of brain health to vascular factors even in relatively healthy middle and older age, and the potential to partly ameliorate cognitive decline by addressing these malleable risk factors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/eurheartj/ehz100DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6642726PMC
July 2019

The influence of X chromosome variants on trait neuroticism.

Mol Psychiatry 2021 02 6;26(2):483-491. Epub 2019 Mar 6.

Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, UK.

Autosomal variants have successfully been associated with trait neuroticism in genome-wide analysis of adequately powered samples. But such studies have so far excluded the X chromosome from analysis. Here, we report genetic association analyses of X chromosome and XY pseudoautosomal single nucleotide polymorphisms (SNPs) and trait neuroticism using UK Biobank samples (N = 405,274). Significant association was found with neuroticism on the X chromosome for 204 markers found within three independent loci (a further 783 were suggestive). Most of the lead neuroticism-related X chromosome variants were located in intergenic regions (n = 397). Involvement of HS6ST2, which has been previously associated with sociability behaviour in the dog, was supported by single SNP and gene-based tests. We found that the amino acid and nucleotide sequences are highly conserved between dogs and humans. From the suggestive X chromosome variants, there were 19 nearby genes which could be linked to gene ontology information. Molecular function was primarily related to binding and catalytic activity; notable biological processes were cellular and metabolic, and nucleic acid binding and transcription factor protein classes were most commonly involved. X-variant heritability of neuroticism was estimated at 0.22% (SE = 0.05) from a full dosage compensation model. A polygenic X-variant score created in an independent sample (maximum N ≈ 7,300) did not predict significant variance in neuroticism, psychological distress, or depressive disorder. We conclude that the X chromosome harbours significant variants influencing neuroticism, and might prove important for other quantitative traits and complex disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-019-0388-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7850965PMC
February 2021

Author Correction: Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism.

Nat Genet 2019 03;51(3):577

Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK.

In the version of this article initially published, in Table 2, the descriptions of pathways and definitions in the first and last columns did not correctly correspond to the values in the other columns. The error has been corrected in the HTML and PDF versions of the article.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0357-3DOI Listing
March 2019

Sex-specific moderation by lifestyle and psychosocial factors on the genetic contributions to adiposity in 112,151 individuals from UK Biobank.

Sci Rep 2019 01 23;9(1):363. Epub 2019 Jan 23.

Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE), Department of Psychology, University of Edinburgh, Edinburgh, UK.

Evidence suggests that lifestyle factors, e.g. physical activity, moderate the manifestation of genetic susceptibility to obesity. The present study uses UK Biobank data to investigate interaction between polygenic scores (PGS) for two obesity indicators, and lifestyle and psychosocial factors in the prediction of the two indicators, with attention to sex-specific effects. Analyses were of 112 151 participants (58 914 females; 40 to 73 years) whose genetic data passed quality control. Moderation effects were analysed in linear regression models predicting body mass index (BMI) and waist-to-hip ratio (WHR), including interaction terms for PGS and each exposure. Greater physical activity, more education, higher income, moderate vs low alcohol consumption, and low material deprivation were each associated with a relatively lower risk for manifestation of genetic susceptibility to obesity (p < 0.001); the moderating effects of physical activity and alcohol consumption were greater in women than men (three-way interaction: p = 0.009 and p = 0.008, respectively). More income and less neuroticism were related to reduced manifestation of genetic susceptibility to high WHR (p = 0.007; p = 0.003); the effect of income was greater in women (three-way interaction: p = 0.001). Lifestyle and psychosocial factors appear to offset genetic risk for adiposity in mid to late adulthood, with some sex-specific associations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-36629-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344557PMC
January 2019

Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation.

Nat Commun 2018 10 26;9(1):4455. Epub 2018 Oct 26.

Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA.

Thyroid dysfunction is an important public health problem, which affects 10% of the general population and increases the risk of cardiovascular morbidity and mortality. Many aspects of thyroid hormone regulation have only partly been elucidated, including its transport, metabolism, and genetic determinants. Here we report a large meta-analysis of genome-wide association studies for thyroid function and dysfunction, testing 8 million genetic variants in up to 72,167 individuals. One-hundred-and-nine independent genetic variants are associated with these traits. A genetic risk score, calculated to assess their combined effects on clinical end points, shows significant associations with increased risk of both overt (Graves' disease) and subclinical thyroid disease, as well as clinical complications. By functional follow-up on selected signals, we identify a novel thyroid hormone transporter (SLC17A4) and a metabolizing enzyme (AADAT). Together, these results provide new knowledge about thyroid hormone physiology and disease, opening new possibilities for therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-06356-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203810PMC
October 2018

Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.

Nat Genet 2018 10 17;50(10):1412-1425. Epub 2018 Sep 17.

Laboratory of Genetics and Genomics, NIA/NIH, Baltimore, MD, USA.

High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0205-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6284793PMC
October 2018

Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence.

Nat Genet 2018 07 25;50(7):912-919. Epub 2018 Jun 25.

Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.

Intelligence is highly heritable and a major determinant of human health and well-being. Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence, but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0152-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411041PMC
July 2018

Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function.

Nat Commun 2018 05 29;9(1):2098. Epub 2018 May 29.

Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.

General cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16-102) and find 148 genome-wide significant independent loci (P < 5 × 10) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure. Gene-based analyses find 709 genes associated with general cognitive function. Expression levels across the cortex are associated with general cognitive function. Using polygenic scores, up to 4.3% of variance in general cognitive function is predicted in independent samples. We detect significant genetic overlap between general cognitive function, reaction time, and many health variables including eyesight, hypertension, and longevity. In conclusion we identify novel genetic loci and pathways contributing to the heritability of general cognitive function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-04362-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974083PMC
May 2018

Sex Differences in the Adult Human Brain: Evidence from 5216 UK Biobank Participants.

Cereb Cortex 2018 08;28(8):2959-2975

Department of Psychology, The University of Edinburgh, Edinburgh, UK.

Sex differences in the human brain are of interest for many reasons: for example, there are sex differences in the observed prevalence of psychiatric disorders and in some psychological traits that brain differences might help to explain. We report the largest single-sample study of structural and functional sex differences in the human brain (2750 female, 2466 male participants; mean age 61.7 years, range 44-77 years). Males had higher raw volumes, raw surface areas, and white matter fractional anisotropy; females had higher raw cortical thickness and higher white matter tract complexity. There was considerable distributional overlap between the sexes. Subregional differences were not fully attributable to differences in total volume, total surface area, mean cortical thickness, or height. There was generally greater male variance across the raw structural measures. Functional connectome organization showed stronger connectivity for males in unimodal sensorimotor cortices, and stronger connectivity for females in the default mode network. This large-scale study provides a foundation for attempts to understand the causes and consequences of sex differences in adult brain structure and function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhy109DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6041980PMC
August 2018

Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism.

Nat Genet 2018 01 18;50(1):6-11. Epub 2017 Dec 18.

Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK.

Neuroticism is a relatively stable personality trait characterized by negative emotionality (for example, worry and guilt) ; heritability estimated from twin studies ranges from 30 to 50% , and SNP-based heritability ranges from 6 to 15% . Increased neuroticism is associated with poorer mental and physical health , translating to high economic burden . Genome-wide association studies (GWAS) of neuroticism have identified up to 11 associated genetic loci . Here we report 116 significant independent loci from a GWAS of neuroticism in 329,821 UK Biobank participants; 15 of these loci replicated at P < 0.00045 in an unrelated cohort (N = 122,867). Genetic signals were enriched in neuronal genesis and differentiation pathways, and substantial genetic correlations were found between neuroticism and depressive symptoms (r  = 0.82, standard error (s.e.) = 0.03), major depressive disorder (MDD; r  = 0.69, s.e. = 0.07) and subjective well-being (r  = -0.68, s.e. = 0.03) alongside other mental health traits. These discoveries significantly advance understanding of neuroticism and its association with MDD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-017-0013-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985926PMC
January 2018

Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets.

Cell Rep 2017 Nov;21(9):2597-2613

Division of Brain Sciences, Department of Medicine, Imperial College, London, UK.

Here, we present a large (n = 107,207) genome-wide association study (GWAS) of general cognitive ability ("g"), further enhanced by combining results with a large-scale GWAS of educational attainment. We identified 70 independent genomic loci associated with general cognitive ability. Results showed significant enrichment for genes causing Mendelian disorders with an intellectual disability phenotype. Competitive pathway analysis implicated the biological processes of neurogenesis and synaptic regulation, as well as the gene targets of two pharmacologic agents: cinnarizine, a T-type calcium channel blocker, and LY97241, a potassium channel inhibitor. Transcriptome-wide and epigenome-wide analysis revealed that the implicated loci were enriched for genes expressed across all brain regions (most strongly in the cerebellum). Enrichment was exclusive to genes expressed in neurons but not oligodendrocytes or astrocytes. Finally, we report genetic correlations between cognitive ability and disparate phenotypes including psychiatric disorders, several autoimmune disorders, longevity, and maternal age at first birth.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2017.11.028DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789458PMC
November 2017

Exome-wide association study of plasma lipids in >300,000 individuals.

Nat Genet 2017 Dec 30;49(12):1758-1766. Epub 2017 Oct 30.

Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.

We screened variants on an exome-focused genotyping array in >300,000 participants (replication in >280,000 participants) and identified 444 independent variants in 250 loci significantly associated with total cholesterol (TC), high-density-lipoprotein cholesterol (HDL-C), low-density-lipoprotein cholesterol (LDL-C), and/or triglycerides (TG). At two loci (JAK2 and A1CF), experimental analysis in mice showed lipid changes consistent with the human data. We also found that: (i) beta-thalassemia trait carriers displayed lower TC and were protected from coronary artery disease (CAD); (ii) excluding the CETP locus, there was not a predictable relationship between plasma HDL-C and risk for age-related macular degeneration; (iii) only some mechanisms of lowering LDL-C appeared to increase risk for type 2 diabetes (T2D); and (iv) TG-lowering alleles involved in hepatic production of TG-rich lipoproteins (TM6SF2 and PNPLA3) tracked with higher liver fat, higher risk for T2D, and lower risk for CAD, whereas TG-lowering alleles involved in peripheral lipolysis (LPL and ANGPTL4) had no effect on liver fat but decreased risks for both T2D and CAD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3977DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5709146PMC
December 2017

Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney.

Hypertension 2017 Jul 24. Epub 2017 Jul 24.

From the Department of Health Sciences (L.V.W., A.M.E., N. Shrine, C.B., T.B., M.D.T.), and Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre (C.P.N., P.S.B., N.J.S.), University of Leicester, United Kingdom; Department of Epidemiology (A.V., P.J.v.d.M., I.M.N., H. Snieder), Division of Nephrology, Department of Internal Medicine (M.H.d.B., M.A.S.), Interdisciplinary Center Psychopathology and Emotion Regulation (IPCE) (A.J.O., H.R., C.A.H.), Department of Genetics, (M.S.), and Department of Cardiology (P.v.d.H.), University of Groningen, University Medical Center Groningen, The Netherlands; Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Iran (A.V.); Department of Psychiatry, VU University Medical Center, Neuroscience Campus Amsterdam, The Netherlands (R. Jansen); Hebrew SeniorLife, Harvard Medical School, Boston, MA (R. Joehanes); National Heart, Lung and Blood Institute's Framingham Heart Study, MA (R. Joehanes, A.D.J., M. Larson); Institute of Psychiatry, Psychology and Neuroscience (P.F.O.), and Department of Twin Research and Genetic Epidemiology (M.M., C. Menni, T.D.S.), King's College London, United Kingdom; Clinical Pharmacology, William Harvey Research Institute (C.P.C., H.R.W., M.R.B., M. Brown, B.M., M.R., P.B.M., M.J.C.) and NIHR Barts Cardiovascular Biomedical Research Unit (C.P.C., H.R.W., M.R.B., M. Brown, P.B.M., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom; Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA (L.M.R., F.G., P.M.R., D.I.C.); Department of Epidemiology (G.C.V., A. Hofman, A.G.U., O.H.F.), Genetic Epidemiology Unit, Department of Epidemiology (N.A., B.A.O., C.M.v.D.), and Department of Internal Medicine (A.G.U.), Erasmus MC, Rotterdam, The Netherlands; Department of Biological Psychology, Vrije Universiteit, Amsterdam, EMGO+ Institute, VU University Medical Center, The Netherlands (J.-J.H., E.J.d.G., G.W., D.I.B.); Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (R.J.S., M. Frånberg, A. Hamsten); Centre for Molecular Medicine, Karolinska Universitetsjukhuset, Solna, Sweden (R.J.S., M. Frånberg, A. Hamsten); Estonian Genome Center (T.E., E.O., A. Metspalu), Institute of Biomedicine and Translational Medicine (S.S., M. Laan), and Estonian Genome Center (M.P.), University of Tartu, Estonia; Divisions of Endocrinology/Children's Hospital, Boston, MA (T.E.); Broad Institute of Harvard and MIT, Cambridge, MA (T.E., C.M.L., C.N.-C.); Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (D.E.A., P.N., A. Chakravarti, G.B.E.); The Population Science Branch, Division of Intramural Research, National Heart Lung and Blood Institute (S.-J.H., D.L.), Laboratory of Neurogenetics, National Institute on Aging (M.A.N.), Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute (F.C.), and Center for Information Technology (Y.D., P.J.M., Q.T.N.), National Institutes of Health, Bethesda, MD; The Framingham Heart Study, Framingham, MA (S.-J.H., D.L.); The Institute for Translational Genomics and Population Sciences, Department of Pediatrics (X.G., J.Y.), and The Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine (J.I.R.), LABioMed at Harbor-UCLA Medical Center, Torrance, CA; Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland (Z.K., M. Bochud); Swiss Institute of Bioinformatics, Lausanne, Switzerland (Z.K.); Department of Cardiology (S. Trompet, J.W.J.) Department of Gerontology and Geriatrics (S. Trompet), Department of Clinical Epidemiology (R.L.-G., R.d.M., D.O.M.-K.), Department of Molecular Epidemiology (J.D.), and Department of Public Health and Primary Care (D.O.M.-K.), Leiden University Medical Center, The Netherlands; Institute for Community Medicine (A.T.), Department of Internal Medicine B (M.D.), and Interfaculty Institute for Genetics and Functional Genomics (U.V.), University Medicine Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Germany (A.T., M.D., U.V.); Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany (J.S.R., A. Peters); Cardiovascular Health Research Unit, Department of Medicine (J.C.B., B.M.P.) and Departments of Biostatistics (K.R.), Epidemiology (B.M.P.), and Health Services (B.M.P.), University of Washington, Seattle; Icelandic Heart Association, Kopavogur, Iceland (A.V.S., V. Gudnason); Faculty of Medicine, University of Iceland, Reykjavik, Iceland (A.V.S., V. Gudnason); Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland (L.-P.L., T.L.); Department of Clinical Chemistry, Faculty of Medicine and Life Sciences, University of Tampere, Finland (L.-P.L., T.L.); Wellcome Trust Centre for Human Genetics (A. Mahajan, A.G., M. Farrall, T.F., C.M.L., H.W., A.P.M.), and Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.G., M. Farrall, H.W.), University of Oxford, United Kingdom; MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, United Kingdom (N.J.W., J.L., C.L., R.J.F.L., R.A.S., J.H.Z.); Clinical Division of Neurogeriatrics, Department of Neurology (E.H., R. Schmidt), Institute of Medical Informatics, Statistics and Documentation (E.H.), and Department of Neurology (H. Schmidt), Medical University Graz, Austria; Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics (P.K.J., H.C., I.R., S.W., J.F.W.), Centre for Cognitive Ageing and Cognitive Epidemiology (L.M.L., S.E.H., G.D., A.J.G., D.C.M.L., J.M.S., I.J.D.), Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine (A. Campbell), Generation Scotland, Centre for Genomic and Experimental Medicine (A. Campbell, S.P., C.H.), Department of Psychology (G.D., D.C.M.L., A. Pattie, I.J.D.), Alzheimer Scotland Dementia Research Centre (J.M.S.), and Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine (C.H.), University of Edinburgh, Scotland, United Kingdom; Department of Health (K.K., A.S.H., T. Niiranen, P.J., A.J., S. Koskinen, P.K., V.S., M.P.), and Chronic Disease Prevention Unit (J.T.), National Institute for Health and Welfare (THL), Helsinki, Finland; Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy (M.T., C.M.B., C.F.S., D.T.); Data Tecnica International, Glen Echo, MD (M.A.N.); Medical Genetics, IRCCS-Burlo Garofolo Children Hospital, Trieste, Italy (D.V., G.G., P.G.); Department of Medical, Surgical and Health Sciences, University of Trieste, Italy (D.V., I.G., M. Brumat, M. Cocca, A. Morgan, G.G., P.G.); Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy (F.D.G.M., P.P.P., A.S.P., A.A.H.); Department of Genetics and Genomic Sciences (K.L.A.), The Charles Bronfman Institute for Personalized Medicine (Y.L., E.P.B., R.J.F.L.), and Mindich Child health Development Institute (R.J.F.L.), Icahn School of Medicine at Mount Sinai, New York; Cardiovascular Epidemiology and Genetics, IMIM, and CIBERCV, Barcelona, Spain (J. Marrugat, R.E.); Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Napoli, Italy (D.R., T. Nutile, R. Sorice, M. Ciullo); Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin (L.M.L.); UCD Conway Institute, Centre for Proteome Research (L.M.L.), and School of Medicine, Conway Institute (D.C.S.), University College Dublin, Belfield, Ireland; Department of Immunology, Genetics and Pathology, Uppsala Universitet, Science for Life Laboratory, Sweden (S.E., Å. Johansson, U.G.); Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor (A.U.J., M. Boehnke); NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester United Kingdom (C.P.N., P.S.B., N.J.S.); MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (J.E.H., V.V., J. Marten, A.F.W., J.F.W.), and Medical Genetics Section, Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine (S.E.H.), University of Edinburgh, Western General Hospital, Scotland, United Kingdom; Department of Epidemiology and Biostatistics, School of Public Health (W.Z., E.E., J.C.C., H.G., B.L., I.T., A.-C.V.), MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health (M.-R.J., P.E.), School of Public Health (N.P.), International Centre for Circulatory Health (S. Thom), and National Heart and Lung Institute (P.S.), Imperial College London, United Kingdom; Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, Southall, United Kingdom (W.Z., J.C.C., J.S.K.); Department of Medical Biology, Faculty of Medicine, University of Split, Croatia (T.Z.); Department of Hygiene and Epidemiology, University of Ioannina Medical School, Greece (E.E.); Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Scotland, United Kingdom (N. Shah, A.S.F.D., C.N.A.P.); Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan (N. Shah); National Institute for Health Research Biomedical Research Centre, London, United Kingdom (M.M.); Department of Human Genetics, Wellcome Trust Sanger Institute, United Kingdom (B.P.P., E.Z.); INSERM U 1219, Bordeaux Population Health Center, France (G.C., C.T., S.D.); Bordeaux University, France (G.C., C.T., S.D.); Hunter Medical Research Institute, New Lambton, NSW, Australia (C.O., E.G.H., R. Scott, J.A.); Center for Statistical Genetics, Department of Biostatistics, Ann Arbor, MI (G.A.); Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Iran (M.A.); Busselton Population Medical Research Institute, Western Australia (J.B., J.H.); PathWest Laboratory Medicine of Western Australia, Nedlands (J.B., J.H.); School of Pathology and Laboratory Medicine (J.B., J.H.), School of Population and Global Health (J.H.), and School of Medicine and Pharmacology (A. James), The University of Western Australia, Nedlands; Imperial College Healthcare NHS Trust, London, United Kingdom (J.C.C., J.S.K.); University of Dundee, Ninewells Hospital & Medical School, United Kingdom (J.C.); Institute of Genetic Medicine (H.J.C.), and Institute of Health and Society (C. Mamasoula), Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Pathology, Amsterdam Medical Center, The Netherlands (J.J.D.); Department of Numerical Analysis and Computer Science, Stockholm University, Sweden (M. Frånberg); Department of Public Health and Caring Sciences, Geriatrics, Uppsala, Sweden (V. Giedraitis); Helmholtz Zentrum Muenchen, Deutsches Forschungszentrum fuer Gesundheit und Umwelt (GmbH), Neuherberg, Germany (C.G.); Department of Psychology, School of Social Sciences, Heriot-Watt University, Edinburgh, United Kingdom (A.J.G.); Intramural Research Program, Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging (T.B.H., L.J.L.); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA (A. Hofman); Center For Life-Course Health Research (M.-R.J.), and Biocenter Oulu (M.-R.J.), University of Oulu, Finland; Unit of Primary Care, Oulu University Hospital, Finland (M.-R.J.); National Heart, Lung and Blood Institute, Cardiovascular Epidemiology and Human Genomics Branch, Bethesda, MD (A.D.J.); Department of Clinical Physiology, Tampere University Hospital, Finland (M.K.); Department of Clinical Physiology, Faculty of Medicine and Life Sciences, University of Tampere, Finland (M.K.); Cardiovascular Research Center (S. Kathiresan, C.N.-C.); Center for Human Genetics (S. Kathiresan), and Center for Human Genetic Research (C.N.-C.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA (S. Kathiresan, C.N.-C.); Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, United Kingdom (K.-T.K.); Department of Public Health, Faculty of Medicine, University of Split, Croatia (I.K., O.P.); Cardiology, Department of Specialties of Medicine, Geneva University Hospital, Switzerland (L. Lin, F.M., G.B.E.); Department of Medical Sciences, Cardiovascular Epidemiology (L. Lind, J.S.), and Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory (E.I.), Uppsala University, Sweden; Department of Psychiatry, EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands (Y.M., B.W.J.H.P.); School of Molecular, Genetic and Population Health Sciences, University of Edinburgh, Medical School, Teviot Place, Scotland, United Kingdom (A.D.M.); Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston (A.C.M.); British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (S.P.), and Institute of Cardiovascular and Medical Sciences, Faculty of Medicine (D.J.S.), University of Glasgow, United Kingdom; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland (A. Palotie, S.R., A.-P.S., M.P.); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada (G.P., S. Thériault); Department of Neurology, General Central Hospital, Bolzano, Italy (P.P.P.); Department of Neurology, University of Lübeck, Germany (P.P.P.); Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Finland (O.T.R.); Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Finland (O.T.R.); Department of Cardiology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China (M.R.); Harvard Medical School, Boston, MA (P.M.R., D.I.C.); Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy (A.R.); Institute of Molecular Biology and Biochemistry, Centre for Molecular Medicine, Medical University of Graz, Austria (Y.S., H. Schmidt); INSERM U1078, Etablissement Français du Sang, Brest Cedex, France (A.S.P.); Faculty of Health, University of Newcastle, Callaghan, NSW, Australia (R. Scott, J.A.); John Hunter Hospital, New Lambton, NSW, Australia (R. Scott, J.A.); The New York Academy of Medicine, New York (D.S.); IRCCS Neuromed, Pozzilli, Isernia, Italy (R. Sorice, M. Ciullo); Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland (A.S.); Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA (K.D.T.); Division of Genetic Outcomes, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA (K.D.T.); Department of Public Health (C.T.), and Department of Neurology (S.D.), Bordeaux University Hospital, France; Department of Internal Medicine, Lausanne University Hospital, CHUV, Switzerland (P.V.); Population Health Research Institute, McMaster University, Hamilton Ontario, Canada (D.C.); National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, United Kingdom (J.S.K.); Dasman Diabetes Institute, Kuwait (J.T.); Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia (J.T.); Department of Neurosciences and Preventive Medicine, Danube-University Krems, Austria (J.T.); Division of Cardiovascular Sciences, The University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, United Kingdom (B.D.K.); Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem (Y.M.L.); Kaiser Permanent Washington Health Research Institute, Seattle, WA (B.M.P.); Institute of Physiology, University Medicine Greifswald, Karlsburg, Germany (R.R); Department of Pulmonary Physiology and Sleep, Sir Charles Gairdner Hospital, Nedlands, Western Australia (A. James); Population Health Research Institute, St George's, University of London, United Kingdom (D.P.S.); Department of Medicine, Columbia University Medical Center, New York (W.P.); Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, CA (E.I.); Data Science Institute and Lancaster Medical School, Lancaster University, United Kingdom (J.K.); and Department of Biostatistics, University of Liverpool, United Kingdom (A.P.M.).

Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near , , , , , and , and provide new replication evidence for a further 2 signals in and Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09438DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5783787PMC
July 2017

Subcortical volume and white matter integrity abnormalities in major depressive disorder: findings from UK Biobank imaging data.

Sci Rep 2017 07 17;7(1):5547. Epub 2017 Jul 17.

Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom.

Previous reports of altered grey and white matter structure in Major Depressive Disorder (MDD) have been inconsistent. Recent meta-analyses have, however, reported reduced hippocampal grey matter volume in MDD and reduced white matter integrity in several brain regions. The use of different diagnostic criteria, scanners and imaging sequences may, however, obscure further anatomical differences. In this study, we tested for differences in subcortical grey matter volume (n = 1157) and white matter integrity (n = 1089) between depressed individuals and controls in the subset of 8590 UK Biobank Imaging study participants who had undergone depression assessments. Whilst we found no significant differences in subcortical volumes, significant reductions were found in depressed individuals versus controls in global white matter integrity, as measured by fractional anisotropy (FA) (β = -0.182, p = 0.005). We also found reductions in FA in association/commissural fibres (β = -0.184, p = 0.010) and thalamic radiations (β = -0.159, p = 0.020). Tract-specific FA reductions were also found in the left superior longitudinal fasciculus (β = -0.194, p = 0.025), superior thalamic radiation (β = -0.224, p = 0.009) and forceps major (β = -0.193, p = 0.025) in depression (all betas standardised). Our findings provide further evidence for disrupted white matter integrity in MDD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-017-05507-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514104PMC
July 2017

Genetic prediction of male pattern baldness.

PLoS Genet 2017 02 14;13(2):e1006594. Epub 2017 Feb 14.

Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom.

Male pattern baldness can have substantial psychosocial effects, and it has been phenotypically linked to adverse health outcomes such as prostate cancer and cardiovascular disease. We explored the genetic architecture of the trait using data from over 52,000 male participants of UK Biobank, aged 40-69 years. We identified over 250 independent genetic loci associated with severe hair loss (P<5x10-8). By splitting the cohort into a discovery sample of 40,000 and target sample of 12,000, we developed a prediction algorithm based entirely on common genetic variants that discriminated (AUC = 0.78, sensitivity = 0.74, specificity = 0.69, PPV = 59%, NPV = 82%) those with no hair loss from those with severe hair loss. The results of this study might help identify those at greatest risk of hair loss, and also potential genetic targets for intervention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1006594DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5308812PMC
February 2017

Novel genetic loci associated with hippocampal volume.

Nat Commun 2017 01 18;8:13624. Epub 2017 Jan 18.

Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA.

The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r=-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms13624DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253632PMC
January 2017
-->