Publications by authors named "Daphne A C Stapels"

11 Publications

  • Page 1 of 1

Local structural plasticity of the evasion protein EapH1 enables engagement with multiple neutrophil serine proteases.

J Biol Chem 2020 05 17;295(22):7753-7762. Epub 2020 Apr 17.

Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506

Members of the EAP family of immune evasion proteins potently inhibit the neutrophil serine proteases (NSPs) neutrophil elastase, cathepsin-G, and proteinase-3. Previously, we determined a 1.8 Å resolution crystal structure of the EAP family member EapH1 bound to neutrophil elastase. This structure revealed that EapH1 blocks access to the enzyme's active site by forming a noncovalent complex with this host protease. To determine how EapH1 inhibits other NSPs, we studied here the effects of EapH1 on cathepsin-G. We found that EapH1 inhibits cathepsin-G with a of 9.8 ± 4.7 nm Although this value is ∼466-fold weaker than the for EapH1 inhibition of neutrophil elastase, the time dependence of inhibition was maintained. To define the physical basis for EapH1's inhibition of cathepsin-G, we crystallized EapH1 bound to this protease, solved the structure at 1.6 Å resolution, and refined the model to and values of 17.4% and 20.9%, respectively. This structure revealed a protease-binding mode for EapH1 with cathepsin-G that was globally similar to that seen in the previously determined EapH1-neutrophil elastase structure. The nature of the intermolecular interactions formed by EapH1 with cathepsin-G differed considerably from that with neutrophil elastase, however, with far greater contributions from the inhibitor backbone in the cathepsin-G-bound form. Together, these results reveal that EapH1's ability to form high-affinity interactions with multiple NSP targets is due to its remarkable level of local structural plasticity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.RA120.013601DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261791PMC
May 2020

Salmonella Effector SteE Converts the Mammalian Serine/Threonine Kinase GSK3 into a Tyrosine Kinase to Direct Macrophage Polarization.

Cell Host Microbe 2020 01 17;27(1):41-53.e6. Epub 2019 Dec 17.

MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK. Electronic address:

Many Gram-negative bacterial pathogens antagonize anti-bacterial immunity through translocated effector proteins that inhibit pro-inflammatory signaling. In addition, the intracellular pathogen Salmonella enterica serovar Typhimurium initiates an anti-inflammatory transcriptional response in macrophages through its effector protein SteE. However, the target(s) and molecular mechanism of SteE remain unknown. Here, we demonstrate that SteE converts both the amino acid and substrate specificity of the host pleiotropic serine/threonine kinase GSK3. SteE itself is a substrate of GSK3, and phosphorylation of SteE is required for its activity. Remarkably, phosphorylated SteE then forces GSK3 to phosphorylate the non-canonical substrate signal transducer and activator of transcription 3 (STAT3) on tyrosine-705. This results in STAT3 activation, which along with GSK3 is required for SteE-mediated upregulation of the anti-inflammatory M2 macrophage marker interleukin-4Rα (IL-4Rα). Overall, the conversion of GSK3 to a tyrosine-directed kinase represents a tightly regulated event that enables a bacterial virulence protein to reprogram innate immune signaling and establish an anti-inflammatory environment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chom.2019.11.002DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953433PMC
January 2020

persisters undermine host immune defenses during antibiotic treatment.

Science 2018 12;362(6419):1156-1160

MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.

Many bacterial infections are hard to treat and tend to relapse, possibly due to the presence of antibiotic-tolerant persisters. In vitro, persister cells appear to be dormant. After uptake of species by macrophages, nongrowing persisters also occur, but their physiological state is poorly understood. In this work, we show that persisters arising during macrophage infection maintain a metabolically active state. Persisters reprogram macrophages by means of effectors secreted by the pathogenicity island 2 type 3 secretion system. These effectors dampened proinflammatory innate immune responses and induced anti-inflammatory macrophage polarization. Such reprogramming allowed nongrowing cells to survive for extended periods in their host. Persisters undermining host immune defenses might confer an advantage to the pathogen during relapse once antibiotic pressure is relieved.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aat7148DOI Listing
December 2018

Evidence for multiple modes of neutrophil serine protease recognition by the EAP family of Staphylococcal innate immune evasion proteins.

Protein Sci 2018 02 21;27(2):509-522. Epub 2017 Nov 21.

Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506.

Neutrophils contain high levels of chymotrypsin-like serine proteases (NSPs) within their azurophilic granules that have a multitude of functions within the immune system. In response, the pathogen Staphylococcus aureus has evolved three potent inhibitors (Eap, EapH1, and EapH2) that protect the bacterium as well as several of its secreted virulence factors from the degradative action of NSPs. We previously showed that these so-called EAP domain proteins represent a novel class of NSP inhibitors characterized by a non-covalent inhibitory mechanism and a distinct target specificity profile. Based upon high levels of structural homology amongst the EAP proteins and the NSPs, as well as supporting biochemical data, we predicted that the inhibited complex would be similar for all EAP/NSP pairs. However, we present here evidence that EapH1 and EapH2 bind the canonical NSP, Neutrophil Elastase (NE), in distinct orientations. We discovered that alteration of EapH1 residues at the EapH1/NE interface caused a dramatic loss of affinity and inhibition of NE, while mutation of equivalent positions in EapH2 had no effect on NE binding or inhibition. Surprisingly, mutation of residues in an altogether different region of EapH2 severely impacted both the NE binding and inhibitory properties of EapH2. Even though EapH1 and EapH2 bind and inhibit NE and a second NSP, Cathepsin G, equally well, neither of these proteins interacts with the structurally related, but non-proteolytic granule protein, azurocidin. These studies expand our understanding of EAP/NSP interactions and suggest that members of this immune evasion protein family are capable of diverse target recognition modes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pro.3342DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775164PMC
February 2018

Single-cell RNA-seq ties macrophage polarization to growth rate of intracellular Salmonella.

Nat Microbiol 2016 Nov 14;2:16206. Epub 2016 Nov 14.

RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2, D-97080 Würzburg, Germany.

Intracellular bacterial pathogens can exhibit large heterogeneity in growth rate inside host cells, with major consequences for the infection outcome. If and how the host responds to this heterogeneity remains poorly understood. Here, we combined a fluorescent reporter of bacterial cell division with single-cell RNA-sequencing analysis to study the macrophage response to different intracellular states of the model pathogen Salmonella enterica serovar Typhimurium. The transcriptomes of individual infected macrophages revealed a spectrum of functional host response states to growing and non-growing bacteria. Intriguingly, macrophages harbouring non-growing Salmonella display hallmarks of the proinflammatory M1 polarization state and differ little from bystander cells, suggesting that non-growing bacteria evade recognition by intracellular immune receptors. By contrast, macrophages containing growing bacteria have turned into an anti-inflammatory, M2-like state, as if fast-growing intracellular Salmonella overcome host defence by reprogramming macrophage polarization. Additionally, our clustering approach reveals intermediate host functional states between these extremes. Altogether, our data suggest that gene expression variability in infected host cells shapes different cellular environments, some of which may favour a growth arrest of Salmonella facilitating immune evasion and the establishment of a long-term niche, while others allow Salmonella to escape intracellular antimicrobial activity and proliferate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nmicrobiol.2016.206DOI Listing
November 2016

The Staphylococcus aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to protect against phagocytosis.

Microbiology (Reading) 2016 07 25;162(7):1185-1194. Epub 2016 Apr 25.

Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.

Staphylococcus aureus has developed many mechanisms to escape from human immune responses. To resist phagocytic clearance, S. aureus expresses a polysaccharide capsule, which effectively masks the bacterial surface and surface-associated proteins, such as opsonins, from recognition by phagocytic cells. Additionally, secretion of the extracellular fibrinogen binding protein (Efb) potently blocks phagocytic uptake of the pathogen. Efb creates a fibrinogen shield surrounding the bacteria by simultaneously binding complement C3b and fibrinogen at the bacterial surface. By means of neutrophil phagocytosis assays with fluorescently labelled encapsulated serotype 5 (CP5) and serotype 8 (CP8) strains we compare the immune-modulating function of these shielding mechanisms. The data indicate that, in highly encapsulated S. aureus strains, the polysaccharide capsule is able to prevent phagocytic uptake at plasma concentrations <10 %, but loses its protective ability at higher concentrations of plasma. Interestingly, Efb shows a strong inhibitory effect on both capsule-negative and encapsulated strains at all tested plasma concentrations. Furthermore, the results suggest that both shielding mechanisms can exist simultaneously and collaborate to provide optimal protection against phagocytosis at a broad range of plasma concentrations. As opsonizing antibodies will be shielded from recognition by either mechanism, incorporating both capsular polysaccharides and Efb in future vaccines could be of great importance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.000293DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977062PMC
July 2016

Neutrophil serine proteases in antibacterial defense.

Curr Opin Microbiol 2015 Feb 18;23:42-8. Epub 2014 Nov 18.

Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands. Electronic address:

Neutrophil serine proteases (NSPs) are critical for the effective functioning of neutrophils and greatly contribute to immune protection against bacterial infections. Thanks to their broad substrate specificity, these chymotrypsin-like proteases trigger multiple reactions that are detrimental to bacterial survival such as direct bacterial killing, generation of antimicrobial peptides, inactivation of bacterial virulence factors and formation of neutrophil extracellular traps. Recently, the importance of NSPs in antibacterial defenses has been further underscored by discoveries of unique bacterial evasion strategies to combat these proteases. Bacteria can indirectly disarm NSPs by protecting bacterial substrates against NSP cleavage, but also produce inhibitory molecules that potently block NSPs. Here we review recent insights in the functional contribution of NSPs in host protection against bacterial infections and the elegant strategies that bacteria use to counteract these responses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mib.2014.11.002DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323955PMC
February 2015

The extracellular adherence protein from Staphylococcus aureus inhibits the classical and lectin pathways of complement by blocking formation of the C3 proconvertase.

J Immunol 2014 Dec 7;193(12):6161-6171. Epub 2014 Nov 7.

School of Biological Sciences; University of Missouri-Kansas City, Kansas City, MO, USA.

The pathogenic bacterium Staphylococcus aureus actively evades many aspects of human innate immunity by expressing a series of small inhibitory proteins. A number of these proteins inhibit the complement system, which labels bacteria for phagocytosis and generates inflammatory chemoattractants. Although the majority of staphylococcal complement inhibitors act on the alternative pathway to block the amplification loop, only a few proteins act on the initial recognition cascades that constitute the classical pathway (CP) and lectin pathway (LP). We screened a collection of recombinant, secreted staphylococcal proteins to determine whether S. aureus produces other molecules that inhibit the CP and/or LP. Using this approach, we identified the extracellular adherence protein (Eap) as a potent, specific inhibitor of both the CP and LP. We found that Eap blocked CP/LP-dependent activation of C3, but not C4, and that Eap likewise inhibited deposition of C3b on the surface of S. aureus cells. In turn, this significantly diminished the extent of S. aureus opsonophagocytosis and killing by neutrophils. This combination of functional properties suggested that Eap acts specifically at the level of the CP/LP C3 convertase (C4b2a). Indeed, we demonstrated a direct, nanomolar-affinity interaction of Eap with C4b. Eap binding to C4b inhibited binding of both full-length C2 and its C2b fragment, which indicated that Eap disrupts formation of the CP/LP C3 proconvertase (C4b2). As a whole, our results demonstrate that S. aureus inhibits two initiation routes of complement by expression of the Eap protein, and thereby define a novel mechanism of immune evasion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1401600DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4258549PMC
December 2014

FcRγ-chain ITAM signaling is critically required for cross-presentation of soluble antibody-antigen complexes by dendritic cells.

J Immunol 2014 Dec 29;193(11):5506-14. Epub 2014 Oct 29.

Laboratory for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands;

The uptake of Ag-Ab immune complexes (IC) after the ligation of activating FcγR on dendritic cells (DC) leads to 100 times more efficient Ag presentation than the uptake of free Ags. FcγRs were reported to facilitate IC uptake and simultaneously induce cellular activation that drives DC maturation and mediates efficient T cell activation. Activating FcγRs elicit intracellular signaling via the ITAM domain of the associated FcRγ-chain. Studies with FcRγ-chain knockout (FcRγ(-/-)) mice reported FcRγ-chain ITAM signaling to be responsible for enhancing both IC uptake and DC maturation. However, FcRγ-chain is also required for surface expression of activating FcγRs, hampering the dissection of ITAM-dependent and independent FcγR functions in FcRγ(-/-) DCs. In this work, we studied the role of FcRγ-chain ITAM signaling using DCs from NOTAM mice that express normal surface levels of activating FcγR, but lack functional ITAM signaling. IC uptake by bone marrow-derived NOTAM DCs was reduced compared with wild-type DCs, but was not completely absent as in FcRγ(-/-) DCs. In NOTAM DCs, despite the uptake of ICs, both MHC class I and MHC class II Ag presentation was completely abrogated similar to FcRγ(-/-) DCs. Secretion of cytokines, upregulation of costimulatory molecules, and Ag degradation were abrogated in NOTAM DCs in response to FcγR ligation. Cross-presentation using splenic NOTAM DCs and prolonged incubation with OVA-IC was also abrogated. Interestingly, in this setup, proliferation of CD4(+) OT-II cells was induced by NOTAM DCs. We conclude that FcRγ-chain ITAM signaling facilitates IC uptake and is essentially required for cross-presentation, but not for MHC class II Ag presentation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1302012DOI Listing
December 2014

Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors.

Proc Natl Acad Sci U S A 2014 Sep 26;111(36):13187-92. Epub 2014 Aug 26.

Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands;

Neutrophils are indispensable for clearing infections with the prominent human pathogen Staphylococcus aureus. Here, we report that S. aureus secretes a family of proteins that potently inhibits the activity of neutrophil serine proteases (NSPs): neutrophil elastase (NE), proteinase 3, and cathepsin G. The NSPs, but not related serine proteases, are specifically blocked by the extracellular adherence protein (Eap) and the functionally orphan Eap homologs EapH1 and EapH2, with inhibitory-constant values in the low-nanomolar range. Eap proteins are together essential for NSP inhibition by S. aureus in vitro and promote staphylococcal infection in vivo. The crystal structure of the EapH1/NE complex showed that Eap molecules constitute a unique class of noncovalent protease inhibitors that occlude the catalytic cleft of NSPs. These findings increase our insights into the complex pathogenesis of S. aureus infections and create opportunities to design novel treatment strategies for inflammatory conditions related to excessive NSP activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1407616111DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246989PMC
September 2014

Novel role of the antimicrobial peptide LL-37 in the protection of neutrophil extracellular traps against degradation by bacterial nucleases.

J Innate Immun 2014 8;6(6):860-8. Epub 2014 Jul 8.

Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.

Neutrophil extracellular traps (NETs) have been described as a fundamental innate immune defence mechanism. They consist of a nuclear DNA backbone associated with different antimicrobial peptides (AMPs) which are able to engulf and kill pathogens. The AMP LL-37, a member of the cathelicidin family, is highly present in NETs. However, the function of LL-37 within NETs is still unknown because it loses its antimicrobial activity when bound to DNA in the NETs. Using immunofluorescence microscopy, we demonstrate that NETs treated with LL-37 are distinctly more resistant to S. aureus nuclease degradation than nontreated NETs. Biochemical assays utilising a random LL-37-fragment library indicated that the blocking effect of LL-37 on nuclease activity is based on the cationic character of the AMP, which facilitates the binding to neutrophil DNA, thus protecting it from degradation by the nuclease. In good correlation to these data, the cationic AMPs human beta defensin-3 and human neutrophil peptide-1 showed similar protection of neutrophil-derived DNA against nuclease degradation. In conclusion, this study demonstrates a novel role of AMPs in host immune defence: beside its direct antimicrobial activity against various pathogens, cationic AMPs can stabilise neutrophil-derived DNA or NETs against bacterial nuclease degradation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000363699DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201878PMC
June 2015