Publications by authors named "Danique van den Kerkhof"

3 Publications

  • Page 1 of 1

Exogenous Integrin αIIbβ3 Inhibitors Revisited: Past, Present and Future Applications.

Int J Mol Sci 2021 Mar 25;22(7). Epub 2021 Mar 25.

Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands.

The integrin αIIbβ3 is the most abundant integrin on platelets. Upon platelet activation, the integrin changes its conformation (inside-out signalling) and outside-in signalling takes place leading to platelet spreading, platelet aggregation and thrombus formation. Bloodsucking parasites such as mosquitoes, leeches and ticks express anticoagulant and antiplatelet proteins, which represent major sources of lead compounds for the development of useful therapeutic agents for the treatment of haemostatic disorders or cardiovascular diseases. In addition to hematophagous parasites, snakes also possess anticoagulant and antiplatelet proteins in their salivary glands. Two snake venom proteins have been developed into two antiplatelet drugs that are currently used in the clinic. The group of proteins discussed in this review are disintegrins, low molecular weight integrin-binding cysteine-rich proteins, found in snakes, ticks, leeches, worms and horseflies. Finally, we highlight various oral antagonists, which have been tested in clinical trials but were discontinued due to an increase in mortality. No new αIIbβ3 inhibitors are developed since the approval of current platelet antagonists, and structure-function analysis of exogenous disintegrins could help find platelet antagonists with fewer adverse side effects.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
March 2021

Inhibition of platelet adhesion, thrombus formation, and fibrin formation by a potent αIIbβ3 integrin inhibitor from ticks.

Res Pract Thromb Haemost 2021 Jan 18;5(1):231-242. Epub 2020 Dec 18.

Department of Biochemistry Cardiovascular Research Institute Maastricht (CARIM) Maastricht University Maastricht The Netherlands.

Background: Ticks puncture the skin of their hosts and secrete saliva, containing antiplatelet proteins, into the blood. Here, we studied disagregin, a potent platelet-inhibiting protein derived from the salivary glands of , an African soft tick. Whereas conventional αIIbβ3 antagonists contain an Arg-Gly-Asp (RGD) sequence for platelet integrin binding, disagregin contains an Arg-Glu-Asp (RED) sequence, hypothesizing a different mode of inhibitory action.

Objectives: We aimed to compare the inhibitory effects of disagregin and its RGD variant (RGD-disagregin) on platelet activation and to unravel the molecular basis of disagregin-αIIbβ3 integrin interactions.

Methods: Disagregin and RGD-disagregin were synthesized by tert-butyloxycarbonyl -based solid-phase peptide synthesis. Effects of both disagregins on platelet aggregation were assessed by light transmission aggregometry in human platelet-rich plasma. Whole-blood thrombus formation was investigated by perfusing blood over collagen I with and without tissue factor at a high wall-shear rate (1000 s) in the presence of disagregin, RGD-disagregin, or eptifibatide.

Results: Disagregin showed inhibition of collagen- and ADP-induced platelet aggregation with half maximal inhibitory concentration values of 64 and 99 nM, respectively. This resembled the complete antiaggregatory effect of eptifibatide. Multiparameter assessment of thrombus formation showed highly suppressed platelet adhesion and aggregate formation with both disagregins, in contrast to eptifibatide treatment, which incompletely blocked aggregation under flow. Fibrin formation under flow was delayed by both disagregin and RGD-disagregin ( < .01) and eptifibatide ( < .05).

Conclusions: Both αIIbβ3-blocking disagregins have a strong potential to suppress collagen-tissue factor-mediated platelet adhesion, thrombus formation, and fibrin formation. Both disagregins can be seen as potential new αIIbβ3 inhibitors.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
January 2021

Thrombo-Inflammation in Cardiovascular Disease: An Expert Consensus Document from the Third Maastricht Consensus Conference on Thrombosis.

Thromb Haemost 2020 Apr 14;120(4):538-564. Epub 2020 Apr 14.

Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Haemostasis Research Unit, University College London, London, United Kingdom.

Thrombo-inflammation describes the complex interplay between blood coagulation and inflammation that plays a critical role in cardiovascular diseases. The third Maastricht Consensus Conference on Thrombosis assembled basic, translational, and clinical scientists to discuss the origin and potential consequences of thrombo-inflammation in the etiology, diagnostics, and management of patients with cardiovascular disease, including myocardial infarction, stroke, and peripheral artery disease. This article presents a state-of-the-art reflection of expert opinions and consensus recommendations regarding the following topics: (1) challenges of the endothelial cell barrier; (2) circulating cells and thrombo-inflammation, focused on platelets, neutrophils, and neutrophil extracellular traps; (3) procoagulant mechanisms; (4) arterial vascular changes in atherogenesis; attenuating atherosclerosis and ischemia/reperfusion injury; (5) management of patients with arterial vascular disease; and (6) pathogenesis of venous thrombosis and late consequences of venous thromboembolism.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
April 2020