Publications by authors named "Daniele Nosi"

77 Publications

The Emerging Role of the Interplay Among Astrocytes, Microglia, and Neurons in the Hippocampus in Health and Disease.

Front Aging Neurosci 2021 6;13:651973. Epub 2021 Apr 6.

Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy.

For over a century, neurons have been considered the basic functional units of the brain while glia only elements of support. Activation of glia has been long regarded detrimental for survival of neurons but more it appears that this is not the case in all circumstances. In this review, we report and discuss the recent literature on the alterations of astrocytes and microglia during inflammaging, the low-grade, slow, chronic inflammatory response that characterizes normal brain aging, and in acute inflammation. Becoming reactive, astrocytes and microglia undergo transcriptional, functional, and morphological changes that transform them into cells with different properties and functions, such as A1 and A2 astrocytes, and M1 and M2 microglia. This classification of microglia and astrocytes in two different, all-or-none states seems too simplistic, and does not correspond to the diverse variety of phenotypes so far found in the brain. Different interactions occur among the many cell populations of the central nervous system in health and disease conditions. Such interactions give rise to networks of morphological and functional reciprocal reliance and dependency. Alterations affecting one cell population reverberate to the others, favoring or dysregulating their activities. In the last part of this review, we present the modifications of the interplay between neurons and glia in rat models of brain aging and acute inflammation, focusing on the differences between CA1 and CA3 areas of the hippocampus, one of the brain regions most susceptible to different insults. With triple labeling fluorescent immunohistochemistry and confocal microscopy (TIC), it is possible to evaluate and compare quantitatively the morphological and functional alterations of the components of the neuron-astrocyte-microglia triad. In the contiguous and interconnected regions of rat hippocampus, CA1 and CA3 Stratum Radiatum, astrocytes and microglia show a different, finely regulated, and region-specific reactivity, demonstrating that glia responses vary in a significant manner from area to area. It will be of great interest to verify whether these differential reactivities of glia explain the diverse vulnerability of the hippocampal areas to aging or to different damaging insults, and particularly the higher sensitivity of CA1 pyramidal neurons to inflammatory stimuli.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnagi.2021.651973DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055856PMC
April 2021

Streptomycin sulphate loaded solid lipid nanoparticles show enhanced uptake in macrophage, lower MIC in Mycobacterium and improved oral bioavailability.

Eur J Pharm Biopharm 2021 Mar 23;160:100-124. Epub 2021 Jan 23.

University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160014, India. Electronic address:

Present study addresses the challenge of incorporating hydrophilic streptomycin sulphate (STRS; log P -6.4) with high dose (1 g/day) into a lipid matrix of SLNs. Cold high-pressure homogenization technique used for SLN preparation achieved 30% drug loading and 51.17 ± 0.95% entrapment efficiency. Polyethylene glycol 600 as a supporting-surfactant assigned small size (218.1 ± 15.46 nm) and mucus-penetrating property. It was conceived to administer STRS-SLNs orally rather than intramuscularly. STRS-SLNs remained stable on incubation for varying times in SGF or SIF. STRS-SLNs were extensively characterised for microscopic (TEM and AFM), thermal (DSC), diffraction (XRD) and spectroscopic (NMR and FTIR) properties and showed zero-order controlled release. Enhanced (60 times) intracellular uptake was observed in THP-1 and Pgp expressing LoVo and DLD-1 cell lines, using fluorescein-SLNs. Presence of SLNs in LoVo cells was also revealed by TEM studies. STRS-SLNs showed 3 times reduction in MIC against Mycobacterium tuberculosis H37RV (256182) in comparison to free STRS. It also showed better activity against both M. bovis BCG and Mycobacterium tuberculosis H37RV (272994) in comparison to free STRS. Cytotoxicity and acute toxicity studies (OECD 425 guidelines) confirmed in vitro and in vivo safety of STRS-SLNs. Single-dose oral pharmacokinetic studies in rat plasma using validated LCMS/MS technique or the microbioassay showed significant oral absorption and bioavailability (160% - 710% increase than free drug).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2021.01.009DOI Listing
March 2021

Ethanol neurotoxicity is mediated by changes in expression, surface localization and functional properties of glutamate AMPA receptors.

J Neurochem 2020 Oct 26. Epub 2020 Oct 26.

Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.

Modifications in the subunit composition of AMPA receptors (AMPARs) have been linked to the transition from physiological to pathological conditions in a number of contexts, including EtOH-induced neurotoxicity. Previous work from our laboratory showed that EtOH withdrawal causes CA1 pyramidal cell death in organotypic hippocampal slices and changes in the expression of AMPARs. Here, we investigated whether changes in expression and function of AMPARs may be causal for EtOH-induced neurotoxicity. To this aim, we examined the subunit composition, localization and function of AMPARs in hippocampal slices exposed to EtOH by using western blotting, surface expression assay, confocal microscopy and electrophysiology. We found that EtOH withdrawal specifically increases GluA1 protein signal in total homogenates, but not in the post-synaptic density-enriched fraction. This is suggestive of overall increase and redistribution of AMPARs to the extrasynaptic compartment. At functional level, AMPA-induced calcium influx was unexpectedly reduced, whereas AMPA-induced current was enhanced in CA1 pyramidal neurons following EtOH withdrawal, suggesting that increased AMPAR expression may lead to cell death because of elevated excitability, and not for a direct contribution on calcium influx. Finally, the neurotoxicity caused by EtOH withdrawal was attenuated by the non-selective AMPAR antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium salt as well as by the selective antagonist of GluA2-lacking AMPARs 1-naphthyl acetyl spermine. We conclude that EtOH neurotoxicity involves changes in expression, surface localization and functional properties of AMPARs, and propose GluA2-lacking AMPARs as amenable specific targets for the development of neuroprotective drugs in EtOH-withdrawal syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.15223DOI Listing
October 2020

The Amphipathic GM1 Molecule Stabilizes Amyloid Aggregates, Preventing their Cytotoxicity.

Biophys J 2020 07 12;119(2):326-336. Epub 2020 Jun 12.

Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.

Amyloid aggregates have been demonstrated to exert cytotoxic effects in several diseases. It is widely accepted that the complex and fascinating aggregation pathway involves a series of steps during which many heterogeneous intermediates are generated. This process may be greatly potentiated by the presence of amphipathic components of plasma membrane because they may serve as interaction, condensation, and nucleation points. However, there are few data regarding structural alterations induced by the binding between the amyloid fibrils and membrane components and its direct effects on cell integrity. In this study, we found, by 1-anilinonaphthalene 8-sulfonic acid and transmission electron microscopy/fast Fourier transform, that yeast prion Sup35 oligomers showed higher structural uniformity and altered surface properties when grown in the presence of monosialotetrahexosylganglioside, a component of the cell membrane. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and confocal/sensitized Förster resonance energy transfer analyses revealed that these fibrils showed low cytotoxicity and affinity to plasma membrane. Moreover, time-lapse analysis of Sup35 oligomer fibrillation on cells suggested that the amyloid aggregation process per se exerts cytotoxic effects through the interaction of amyloid intermediates with plasma membrane components. These data provide, to our knowledge, new insights to understand the mechanism of amyloid growth and cytotoxicity in the pathogenesis of amyloid diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpj.2020.06.005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376221PMC
July 2020

Platelet-Rich Plasma and Bone Marrow-Derived Mesenchymal Stromal Cells Prevent TGF-β1-Induced Myofibroblast Generation but Are Not Synergistic when Combined: Morphological in vitro Analysis.

Cells Tissues Organs 2018 5;206(6):283-295. Epub 2019 Aug 5.

Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy,

The persistence of activated myofibroblasts is a hallmark of fibrosis of many organs. Thus, the modulation of the generation/functionality of these cells may represent a strategical anti-fibrotic therapeutic option. Bone marrow-derived mesenchymal stromal cell (MSC)-based therapy has shown promising clues, but some criticisms still limit the clinical use of these cells, including the need to avoid xenogeneic compound contamination for ex vivo cell amplification and the identification of appropriate growth factors acting as a pre-conditioning agent and/or cell delivery vehicle during transplantation, thus enabling the improvement of cell survival in the host tissue microenvironment. Many studies have demonstrated the ability of platelet-rich plasma (PRP), a source of many biologically active molecules, to positively influence MSC proliferation, survival, and functionality, as well as its anti-fibrotic potential. Here we investigated the effects of PRP, murine and human bone marrow-derived MSCs, and of the combined treatment PRP/MSCs on in vitro differentiation of murine NIH/3T3 and human HDFα fibroblasts to myofibroblasts induced by transforming growth factor (TGF)-β1, a well-known pro-fibrotic agent. The myofibroblastic phenotype was evaluated morphologically (cell shape and actin cytoskeleton assembly) and immunocytochemically (vinculin-rich focal adhesion clustering, α-smooth muscle actin and type-1 collagen expression). We found that PRP and MSCs, both as single treatments and in combination, were able to prevent the TGF-β1-induced fibroblast-myofibroblast transition. Unexpectedly, the combination PRP/MSCs had no synergistic effects. In conclusion, within the limitations related to an in vitro experimentation, our study may contribute to providing an experimental background for supporting the anti-fibrotic potential of the combination PRP/MSCs which, once translated "from bench to bedside," could potentially offer advantages over the single treatments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000501499DOI Listing
August 2019

Neurotoxicity of Unconjugated Bilirubin in Mature and Immature Rat Organotypic Hippocampal Slice Cultures.

Neonatology 2019 15;115(3):217-225. Epub 2019 Jan 15.

Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.

Background: The physiopathology of bilirubin-induced neurological disorders is not completely understood.

Objectives: The aim of our study was to assess the effect on bilirubin neurotoxicity of the maturity or immaturity of exposed cells, the influence of different unconjugated bilirubin (UCB) and human serum albumin (HSA) concentrations, and time of UCB exposure.

Methods: Organotypic hippocampal slices were exposed for 48 h to different UCB and HSA concentrations after 14 (mature) or 7 (immature) days of in vitro culture. Immature slices were also exposed to UCB and HSA for 72 h. The different effects of exposure time to UCB on neurons and astrocytes were evaluated.

Results: We found that 48 h of UCB exposure was neurotoxic for mature rat organotypic hippocampal slices while 72 h of exposure was neurotoxic for immature slices. Forty-eight-hour UCB exposure was toxic for astrocytes but not for neurons, while 72-h exposure was toxic for both astrocytes and neurons. HSA prevented UCB toxicity when the UCB:HSA molar ratio was ≤1 in both mature and immature slices.

Conclusions: We confirmed UCB neurotoxicity in mature and immature rat hippocampal slices, although immature ones were more resistant. HSA was effective in preventing UCB neurotoxicity in both mature and immature rat hippocampal slices.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000494101DOI Listing
December 2019

Microglial distribution, branching, and clearance activity in aged rat hippocampus are affected by astrocyte meshwork integrity: evidence of a novel cell-cell interglial interaction.

FASEB J 2019 03 29;33(3):4007-4020. Epub 2018 Nov 29.

Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.

Aging and neurodegenerative diseases share a condition of neuroinflammation entailing the production of endogenous cell debris in the CNS that must be removed by microglia ( i.e., resident macrophages), to restore tissue homeostasis. In this context, extension of microglial cell branches toward cell debris underlies the mechanisms of microglial migration and phagocytosis. Amoeboid morphology and the consequent loss of microglial branch functionality characterizes dysregulated microglia. Microglial migration is assisted by another glial population, the astroglia, which forms a dense meshwork of cytoplasmic projections. Amoeboid microglia and disrupted astrocyte meshwork are consistent traits in aged CNS. In this study, we assessed a possible correlation between microglia and astroglia morphology in rat models of chronic neuroinflammation and aging, by 3-dimensional confocal analysis implemented with particle analysis. Our findings suggest that a microglia-astroglia interaction occurs in rat hippocampus via cell-cell contacts, mediating microglial cell branching in the presence of inflammation. In aged rats, the impairment of such an interaction correlates with altered distribution, morphology, and inefficient clearance by microglia. These data support the idea that generally accepted functional boundaries between microglia and astrocytes should be re-evaluated to better understand how their functions overlap and interact.-Lana, D., Ugolini, F., Wenk, G. L., Giovannini, M. G., Zecchi-Orlandini, S., Nosi, D. Microglial distribution, branching, and clearance activity in aged rat hippocampus are affected by astrocyte meshwork integrity: evidence of a novel cell-cell interglial interaction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201801539RDOI Listing
March 2019

Different Patterns of Neurodegeneration and Glia Activation in CA1 and CA3 Hippocampal Regions of TgCRND8 Mice.

Front Aging Neurosci 2018 13;10:372. Epub 2018 Nov 13.

Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.

We investigated the different patterns of neurodegeneration and glia activation in CA1 and CA3 hippocampal areas of TgCRND8 mice. The main feature of this transgenic model is the rapid development of the amyloid pathology, which starts already at 3 months of age. We performed immunohistochemical analyses to compare the different sensibility of the two hippocampal regions to neurodegeneration. We performed qualitative and quantitative evaluations by fluorescence immunohistochemistry with double or triple staining, followed by confocal microscopy and digital image analysis in stratum pyramidale (SP) and stratum radiatum (SR) of CA1 and CA3, separately. We evaluated time-dependent Aβ plaques deposition, expression of inflammatory markers, as well as quantitative and morphological alterations of neurons and glia in transgenic mice at 3 (Tg 3M) and 6 (Tg 6M) months of age, compared to WT mice. In CA1 SR of Tg 6M mice, we found significantly more Medium and Large plaques than in CA3. The pattern of neurodegeneration and astrocytes activation was different in the two areas, indicating higher sensitivity of CA1. In the CA1 SP of Tg 6M mice, we found signs of reactive astrogliosis, such as increase of astrocytes density in SP, increase of GFAP expression in SR, and elongation of astrocytes branches. We found also common patterns of glia activation and neurodegenerative processes in CA1 and CA3 of Tg 6M mice: significant increase of total and reactive microglia density in SP and SR, increased expression of TNFα, of iNOS, and IL1β in astrocytes and increased density of neurons-astrocytes-microglia triads. In CA1 SP, we found decrease of volume and number of pyramidal neurons, paralleled by increase of apoptosis, and, consequently, shrinkage of CA1 SP. These data demonstrate that in TgCRND8 mice, the responses of neurons and glia to neurodegenerative patterns induced by Aβ plaques deposition is not uniform in the two hippocampal areas, and in CA1 pyramidal neurons, the higher sensitivity may be related to the different plaque distribution in this area. All these modifications may be at the basis of memory loss, the peculiar symptom of AD, which was demonstrated in this transgenic mouse model of Aβ deposition, even at early stages.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnagi.2018.00372DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6243135PMC
November 2018

Platelet-Rich Plasma Prevents In Vitro Transforming Growth Factor-β1-Induced Fibroblast to Myofibroblast Transition: Involvement of Vascular Endothelial Growth Factor (VEGF)-A/VEGF Receptor-1-Mediated Signaling .

Cells 2018 Sep 19;7(9). Epub 2018 Sep 19.

Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy.

The antifibrotic potential of platelet-rich plasma (PRP) is controversial. This study examined the effects of PRP on in vitro transforming growth factor (TGF)-β1-induced differentiation of fibroblasts into myofibroblasts, the main drivers of fibrosis, and the involvement of vascular endothelial growth factor (VEGF)-A in mediating PRP-induced responses. The impact of PRP alone on fibroblast differentiation was also assessed. Myofibroblastic phenotype was evaluated by confocal fluorescence microscopy and western blotting analyses of α-smooth muscle actin (sma) and type-1 collagen expression, vinculin-rich focal adhesion clustering, and stress fiber assembly. Notch-1, connexin 43, and VEGF-A expression were also analyzed by RT-PCR. PRP negatively regulated fibroblast-myofibroblast transition via VEGF-A/VEGF receptor (VEGFR)-1-mediated inhibition of TGF-β1/Smad3 signaling. Indeed TGF-β1/PRP co-treated fibroblasts showed a robust attenuation of the myofibroblastic phenotype concomitant with a decrease of Smad3 expression levels. The VEGFR-1 inhibition by KRN633 or blocking antibodies, or VEGF-A neutralization in these cells prevented the PRP-promoted effects. Moreover PRP abrogated the TGF-β1-induced reduction of VEGF-A and VEGFR-1 cell expression. The role of VEGF-A signaling in counteracting myofibroblast generation was confirmed by cell treatment with soluble VEGF-A. PRP as single treatment did not induce fibroblast myodifferentiation. This study provides new insights into cellular and molecular mechanisms underpinning PRP antifibrotic action.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells7090142DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162453PMC
September 2018

Red (635 nm), Near-Infrared (808 nm) and Violet-Blue (405 nm) Photobiomodulation Potentiality on Human Osteoblasts and Mesenchymal Stromal Cells: A Morphological and Molecular In Vitro Study.

Int J Mol Sci 2018 Jul 3;19(7). Epub 2018 Jul 3.

Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.

Photobiomodulation (PBM) has been used for bone regenerative purposes in different fields of medicine and dentistry, but contradictory results demand a skeptical look for its potential benefits. This in vitro study compared PBM potentiality by red (635 ± 5 nm) or near-infrared (NIR, 808 ± 10 nm) diode lasers and violet-blue (405 ± 5 nm) light-emitting diode operating in a continuous wave with a 0.4 J/cm² energy density, on human osteoblast and mesenchymal stromal cell (hMSC) viability, proliferation, adhesion and osteogenic differentiation. PBM treatments did not alter viability (PI/Syto16 and MTS assays). Confocal immunofluorescence and RT-PCR analyses indicated that red PBM (i) on both cell types increased vinculin-rich clusters, osteogenic markers expression (Runx-2, alkaline phosphatase, osteopontin) and mineralized bone-like nodule structure deposition and (ii) on hMSCs induced stress fiber formation and upregulated the expression of proliferation marker Ki67. Interestingly, osteoblast responses to red light were mediated by Akt signaling activation, which seems to positively modulate reactive oxygen species levels. Violet-blue light-irradiated cells behaved essentially as untreated ones and NIR irradiated ones displayed modifications of cytoskeleton assembly, Runx-2 expression and mineralization pattern. Although within the limitations of an in vitro experimentation, this study may suggest PBM with 635 nm laser as potential effective option for promoting/improving bone regeneration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms19071946DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073131PMC
July 2018

The Selective Antagonism of Adenosine A Receptors Reduces the Synaptic Failure and Neuronal Death Induced by Oxygen and Glucose Deprivation in Rat CA1 Hippocampus .

Front Pharmacol 2018 24;9:399. Epub 2018 Apr 24.

Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.

Ischemia is a multifactorial pathology characterized by different events evolving in time. Immediately after the ischemic insult, primary brain damage is due to the massive increase of extracellular glutamate. Adenosine in the brain increases dramatically during ischemia in concentrations able to stimulate all its receptors, A, A, A, and A. Although adenosine exerts clear neuroprotective effects through A receptors during ischemia, the use of selective A receptor agonists is hampered by their undesirable peripheral side effects. So far, no evidence is available on the involvement of adenosine A receptors in cerebral ischemia. This study explored the role of adenosine A receptors on synaptic and cellular responses during oxygen and glucose deprivation (OGD) in the CA1 region of rat hippocampus . We conducted extracellular recordings of CA1 field excitatory post-synaptic potentials (fEPSPs); the extent of damage on neurons and glia was assessed by immunohistochemistry. Seven min OGD induced anoxic depolarization (AD) in all hippocampal slices tested and completely abolished fEPSPs that did not recover after return to normoxic condition. Seven minutes OGD was applied in the presence of the selective adenosine A receptor antagonists MRS1754 (500 nM) or PSB603 (50 nM), separately administered 15 min before, during and 5 min after OGD. Both antagonists were able to prevent or delay the appearance of AD and to modify synaptic responses after OGD, allowing significant recovery of neurotransmission. Adenosine A receptor antagonism also counteracted the reduction of neuronal density in CA1 stratum pyramidale, decreased apoptosis at least up to 3 h after the end of OGD, and maintained activated mTOR levels similar to those of controls, thus sparing neurons from the degenerative effects caused by the simil-ischemic conditions. Astrocytes significantly proliferated in CA1 stratum radiatum already 3 h after the end of OGD, possibly due to increased glutamate release. Areceptor antagonism significantly prevented astrocyte modifications. Both A receptor antagonists did not protect CA1 neurons from the neurodegeneration induced by glutamate application, indicating that the antagonistic effect is upstream of glutamate release. The selective antagonists of the adenosine A receptor subtype may thus represent a new class of neuroprotective drugs in ischemia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2018.00399DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928446PMC
April 2018

Sphingosine 1-Phosphate Receptor 1 Is Required for MMP-2 Function in Bone Marrow Mesenchymal Stromal Cells: Implications for Cytoskeleton Assembly and Proliferation.

Stem Cells Int 2018 11;2018:5034679. Epub 2018 Mar 11.

Unit of Biochemical Sciences and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50 Viale GB Morgagni, 50134 Florence, Italy.

Bone marrow-derived mesenchymal stromal cell- (BM-MSC-) based therapy is a promising option for regenerative medicine. An important role in the control of the processes influencing the BM-MSC therapeutic efficacy, namely, extracellular matrix remodelling and proliferation and secretion ability, is played by matrix metalloproteinase- (MMP-) 2. Therefore, the identification of paracrine/autocrine regulators of MMP-2 function may be of great relevance for improving BM-MSC therapeutic potential. We recently reported that BM-MSCs release the bioactive lipid sphingosine 1-phosphate (S1P) and, here, we demonstrated an impairment of MMP-2 expression/release when the S1P receptor subtype S1PR1 is blocked. Notably, active S1PR1/MMP-2 signalling is required for F-actin structure assembly (lamellipodia, microspikes, and stress fibers) and, in turn, cell proliferation. Moreover, in experimental conditions resembling the damaged/regenerating tissue microenvironment (hypoxia), S1P/S1PR1 system is also required for HIF-1 expression and vinculin reduction. Our findings demonstrate for the first time the trophic role of S1P/S1PR1 signalling in maintaining BM-MSCs' ability to modulate MMP-2 function, necessary for cytoskeleton reorganization and cell proliferation in both normoxia and hypoxia. Altogether, these data provide new perspectives for considering S1P/S1PR1 signalling a pharmacological target to preserve BM-MSC properties and to potentiate their beneficial potential in tissue repair.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2018/5034679DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5866864PMC
March 2018

Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration.

Cell Tissue Res 2018 Jun 5;372(3):549-570. Epub 2018 Feb 5.

Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134, Florence, Italy.

Satellite cell-mediated skeletal muscle repair/regeneration is compromised in cases of extended damage. Bone marrow mesenchymal stromal cells (BM-MSCs) hold promise for muscle healing but some criticisms hamper their clinical application, including the need to avoid animal serum contamination for expansion and the scarce survival after transplant. In this context, platelet-rich plasma (PRP) could offer advantages. Here, we compare the effects of PRP or standard culture media on C2C12 myoblast, satellite cell and BM-MSC viability, survival, proliferation and myogenic differentiation and evaluate PRP/BM-MSC combination effects in promoting myogenic differentiation. PRP induced an increase of mitochondrial activity and Ki67 expression comparable or even greater than that elicited by standard media and promoted AKT signaling activation in myoblasts and BM-MSCs and Notch-1 pathway activation in BM-MSCs. It stimulated MyoD, myogenin, α-sarcomeric actin and MMP-2 expression in myoblasts and satellite cell activation. Notably, PRP/BM-MSC combination was more effective than PRP alone. We found that BM-MSCs influenced myoblast responses through a paracrine activation of AKT signaling, contributing to shed light on BM-MSC action mechanisms. Our results suggest that PRP represents a good serum substitute for BM-MSC manipulation in vitro and could be beneficial towards transplanted cells in vivo. Moreover, it might influence muscle resident progenitors' fate, thus favoring the endogenous repair/regeneration mechanisms. Finally, within the limitations of an in vitro experimentation, this study provides an experimental background for considering the PRP/BM-MSC combination as a potential therapeutic tool for skeletal muscle damage, combining the beneficial effects of BM-MSCs and PRP on muscle tissue, while potentiating BM-MSC functionality.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-018-2792-3DOI Listing
June 2018

Schwann cell TRPA1 mediates neuroinflammation that sustains macrophage-dependent neuropathic pain in mice.

Nat Commun 2017 12 1;8(1):1887. Epub 2017 Dec 1.

Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, 50139, Italy.

It is known that transient receptor potential ankyrin 1 (TRPA1) channels, expressed by nociceptors, contribute to neuropathic pain. Here we show that TRPA1 is also expressed in Schwann cells. We found that in mice with partial sciatic nerve ligation, TRPA1 silencing in nociceptors attenuated mechanical allodynia, without affecting macrophage infiltration and oxidative stress, whereas TRPA1 silencing in Schwann cells reduced both allodynia and neuroinflammation. Activation of Schwann cell TRPA1 evoked NADPH oxidase 1 (NOX1)-dependent HO release, and silencing or blocking Schwann cell NOX1 attenuated nerve injury-induced macrophage infiltration, oxidative stress and allodynia. Furthermore, the NOX2-dependent oxidative burst, produced by macrophages recruited to the perineural space activated the TRPA1-NOX1 pathway in Schwann cells, but not TRPA1 in nociceptors. Schwann cell TRPA1 generates a spatially constrained gradient of oxidative stress, which maintains macrophage infiltration to the injured nerve, and sends paracrine signals to activate TRPA1 of ensheathed nociceptors to sustain mechanical allodynia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-017-01739-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5709495PMC
December 2017

Alterations in the Interplay between Neurons, Astrocytes and Microglia in the Rat Dentate Gyrus in Experimental Models of Neurodegeneration.

Front Aging Neurosci 2017 11;9:296. Epub 2017 Sep 11.

Department of Health Sciences, Section of Pharmacology and Clinical Oncology, University of FlorenceFlorence, Italy.

The hippocampus is negatively affected by aging and neurodegenerative diseases leading to impaired learning and memory abilities. A diverse series of progressive modifications in the intercellular communication among neurons, astrocytes and microglia occur in the hippocampus during aging or inflammation. A detailed understanding of the neurobiological modifications that contribute to hippocampal dysfunction may reveal new targets for therapeutic intervention. The current study focussed on the interplay between neurons and astroglia in the Granule Layer (GL) and the Polymorphic Layer (PL) of the Dentate Gyrus (DG) of adult, aged and LPS-treated rats. In GL and PL of aged and LPS-treated rats, astrocytes were less numerous than in adult rats. In GL of LPS-treated rats, astrocytes acquired morphological features of reactive astrocytes, such as longer branches than was observed in adult rats. Total and activated microglia increased in the aged and LPS-treated rats, as compared to adult rats. In the GL of aged and LPS-treated rats many neurons were apoptotic. Neurons decreased significantly in GL and PL of aged but not in rats treated with LPS. In PL of aged and LPS-treated rats many damaged neurons were embraced by microglia cells and were infiltrated by branches of astrocyte, which appeared to be bisecting the cell body, forming triads. Reactive microglia had a scavenging activity of dying neurons, as shown by the presence of neuronal debris within their cytoplasm. The levels of the chemokine fractalkine (CX3CL1) increased in hippocampal homogenates of aged rats and rats treated with LPS, and CX3CL1 immunoreactivity colocalized with activated microglia cells. Here we demonstrated that in the DG of aged and LPS-treated rats, astrocytes and microglia cooperate and participate in phagocytosis/phagoptosis of apoptotic granular neurons. The differential expression/activation of astroglia and the alteration of their intercommunication may be responsible for the different susceptibility of the DG in comparison to the CA1 and CA3 hippocampal areas to neurodegeneration during aging and inflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnagi.2017.00296DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5601988PMC
September 2017

The neuron-astrocyte-microglia triad in CA3 after chronic cerebral hypoperfusion in the rat: Protective effect of dipyridamole.

Exp Gerontol 2017 10 9;96:46-62. Epub 2017 Jun 9.

Department of Health Sciences, Section of Pharmacology and Clinical Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy. Electronic address:

We investigated the quantitative and morphofunctional alterations of neuron-astrocyte-microglia triads in CA3 hippocampus, in comparison to CA1, after 2 Vessel Occlusion (2VO) and the protective effect of dipyridamole. We evaluated 3 experimental groups: sham-operated rats (sham, n=15), 2VO-operated rats treated with vehicle (2VO-vehicle, n=15), and 2VO-operated rats treated with dipyridamole from day 0 to day 7 (2VO-dipyridamole, n=15), 90days after 2VO. We analyzed Stratum Pyramidalis (SP), Stratum Lucidum (SL) and Stratum Radiatum (SR) of CA3. 1) ectopic neurons increased in SL and SR of 2VO-vehicle, and 2VO-dipyridamole rats; 2) apoptotic neurons increased in SP of 2VO-vehicle rats and dipyridamole reverted this effect; 3) astrocytes increased in SP, SL and SR of 2VO-vehicle and 2VO-dipyridamole rats; 4) TNF-α expression increased in astrocytes, blocked by dipyridamole, and in dendrites in SR of 2VO-vehicle rats; 5) total microglia increased in SL and SR of 2VO-vehicle and 2VO-dipyridamole rats; 6) triads increased in SR of 2VO-vehicle rats and dipyridamole reverted this effect. Microglia cooperated with astrocytes to phagocytosis of apoptotic neurons and debris, and engulfed ectopic non-fragmented neurons in SL of 2VO-vehicle and 2VO-dipyridamole rats, through a new mechanism called phagoptosis. CA3 showed a better adaptive capacity than CA1 to the ischemic insult, possibly due to the different behaviour of astrocytes and microglial cells. Dipyridamole had neuroprotective effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2017.06.006DOI Listing
October 2017

Mesenchymal stromal cell and osteoblast responses to oxidized titanium surfaces pre-treated with λ = 808 nm GaAlAs diode laser or chlorhexidine: in vitro study.

Lasers Med Sci 2017 Aug 27;32(6):1309-1320. Epub 2017 May 27.

Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134, Florence, Italy.

Preservation of implant biocompatibility following peri-implantitis treatments is a crucial issue in odontostomatological practice, being closely linked to implant re-osseointegration. Our aim was to assess the responses of osteoblast-like Saos2 cells and adult human bone marrow-mesenchymal stromal cells (MSCs) to oxidized titanium surfaces (TiUnite, TiU) pre-treated with a 808 ± 10 nm GaAlAs diode laser operating in non-contact mode, in continuous (2 W, 400 J/cm; CW) or pulsed (20 kHz, 7 μs, 0.44 W, 88 J/cm; PW) wave, previously demonstrated to have a strong bactericidal effect and proposed as optional treatment for peri-implantitis. The biocompatibility of TiU surfaces pre-treated with chlorhexidine digluconate (CHX) was also evaluated. In particular, in order to mimic the in vivo approach, TiU surfaces were pre-treated with CHX (0.2%, 5 min); CHX and rinse; and CHX, rinse and air drying. In some experiments, the cells were cultured on untreated TiU before being exposed to CHX. Cell viability (MTS assay), proliferation (EdU incorporation assay; Ki67 confocal immunofluorescence analysis), adhesion (morphological analysis of actin cytoskeleton organization), and osteogenic differentiation (osteopontin confocal immunofluorescence analysis; mineralized bone-like nodule formation) analyses were performed. CHX resulted cytotoxic in all experimental conditions. Diode laser irradiation preserved TiU surface biocompatibility. Notably, laser treatment appeared even to improve the known osteoconductive properties of TiU surfaces. Within the limitations of an in vitro experimentation, this study contributes to provide additional experimental basis to support the potential use of 808 ± 10 nm GaAlAs diode laser at the indicated irradiation setting, in the treatment of peri-implantitis and to discourage the use of CHX.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10103-017-2243-5DOI Listing
August 2017

Effects of photodynamic laser and violet-blue led irradiation on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide attached to moderately rough titanium surface: in vitro study.

Lasers Med Sci 2017 May 10;32(4):857-864. Epub 2017 Mar 10.

Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, Largo Brambilla 3, University of Florence, 50134, Florence, Italy.

Effective decontamination of biofilm and bacterial toxins from the surface of dental implants is a yet unresolved issue. This study investigates the in vitro efficacy of photodynamic treatment (PDT) with methylene blue (MB) photoactivated with λ 635 nm diode laser and of λ 405 nm violet-blue LED phototreatment for the reduction of bacterial biofilm and lipopolysaccharide (LPS) adherent to titanium surface mimicking the bone-implant interface. Staphylococcus aureus biofilm grown on titanium discs with a moderately rough surface was subjected to either PDT (0.1% MB and λ 635 nm diode laser) or λ 405 nm LED phototreatment for 1 and 5 min. Bactericidal effect was evaluated by vital staining and residual colony-forming unit count. Biofilm and titanium surface morphology were analyzed by scanning electron microscopy (SEM). In parallel experiments, discs coated with Escherichia coli LPS were treated as above before seeding with RAW 264.7 macrophages to quantify LPS-driven inflammatory cell activation by measuring the enhanced generation of nitric oxide (NO). Both PDT and LED phototreatment induced a statistically significant (p < 0.05 or higher) reduction of viable bacteria, up to -99 and -98% (5 min), respectively. Moreover, besides bactericidal effect, PDT and LED phototreatment also inhibited LPS bioactivity, assayed as nitrite formation, up to -42%, thereby blunting host inflammatory response. Non-invasive phototherapy emerges as an attractive alternative in the treatment of peri-implantitis to reduce bacteria and LPS adherent to titanium implant surface without causing damage of surface microstructure. Its efficacy in the clinical setting remains to be investigated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10103-017-2185-yDOI Listing
May 2017

Biochemical and Electrophysiological Modification of Amyloid Transthyretin on Cardiomyocytes.

Biophys J 2016 Nov;111(9):2024-2038

Department of Biomedical, Experimental and Clinical Sciences "Mario Serio,", University of Florence, Florence, Italy; Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy.

Transthyretin (TTR) amyloidoses are familial or sporadic degenerative conditions that often feature heavy cardiac involvement. Presently, no effective pharmacological therapy for TTR amyloidoses is available, mostly due to a substantial lack of knowledge about both the molecular mechanisms of TTR aggregation in tissue and the ensuing functional and viability modifications that occur in aggregate-exposed cells. TTR amyloidoses are of particular interest regarding the relation between functional and viability impairment in aggregate-exposed excitable cells such as peripheral neurons and cardiomyocytes. In particular, the latter cells provide an opportunity to investigate in parallel the electrophysiological and biochemical modifications that take place when the cells are exposed for various lengths of time to variously aggregated wild-type TTR, a condition that characterizes senile systemic amyloidosis. In this study, we investigated biochemical and electrophysiological modifications in cardiomyocytes exposed to amyloid oligomers or fibrils of wild-type TTR or to its T4-stabilized form, which resists tetramer disassembly, misfolding, and aggregation. Amyloid TTR cytotoxicity results in mitochondrial potential modification, oxidative stress, deregulation of cytoplasmic Ca levels, and Ca cycling. The altered intracellular Ca cycling causes a prolongation of the action potential, as determined by whole-cell recordings of action potentials on isolated mouse ventricular myocytes, which may contribute to the development of cellular arrhythmias and conduction alterations often seen in patients with TTR amyloidosis. Our data add information about the biochemical, functional, and viability alterations that occur in cardiomyocytes exposed to aggregated TTR, and provide clues as to the molecular and physiological basis of heart dysfunction in sporadic senile systemic amyloidosis and familial amyloid cardiomyopathy forms of TTR amyloidoses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpj.2016.09.010DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5103001PMC
November 2016

The neuron-astrocyte-microglia triad involvement in neuroinflammaging mechanisms in the CA3 hippocampus of memory-impaired aged rats.

Exp Gerontol 2016 10 25;83:71-88. Epub 2016 Jul 25.

Department of Health Sciences, Section of Pharmacology and Clinical Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy. Electronic address:

We examined the effects of inflammaging on memory encoding, and qualitative and quantitative modifications on proinflammatory proteins, apoptosis, neurodegeneration and morphological changes of neuron-astrocyte-microglia triads in CA3 Stratum Pyramidale (SP), Stratum Lucidum (SL) and Stratum Radiatum (SR) of young (3months) and aged rats (20months). Aged rats showed short-term memory impairments in the inhibitory avoidance task, increased expression of iNOS and activation of p38MAPK in SP, increase of apoptotic neurons in SP and of ectopic neurons in SL, and decrease of CA3 pyramidal neurons. The number of astrocytes and their branches length decreased in the three CA3 subregions of aged rats, with morphological signs of clasmatodendrosis. Total and activated microglia increased in the three CA3 subregions of aged rats. In aged rats CA3, astrocytes surrounded ectopic degenerating neurons forming "micro scars" around them. Astrocyte branches infiltrated the neuronal cell body, and, together with activated microglia formed "triads". In the triads, significantly more numerous in CA3 SL and SR of aged rats, astrocytes and microglia cooperated in fragmentation and phagocytosis of ectopic neurons. Inflammaging-induced modifications of astrocytes and microglia in CA3 of aged rats may help clearing neuronal debris derived from low-grade inflammation and apoptosis. These events might be common mechanisms underlying many neurodegenerative processes. The frequency to which they appear might depend upon, or might be the cause of, the burden and severity of neurodegeneration. Targeting the triads may represent a therapeutic strategy which may control inflammatory processes and spread of further cellular damage to neighboring cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2016.07.011DOI Listing
October 2016

Histamine Regulates Actin Cytoskeleton in Human Toll-like Receptor 4-activated Monocyte-derived Dendritic Cells Tuning CD4+ T Lymphocyte Response.

J Biol Chem 2016 Jul 13;291(28):14803-14. Epub 2016 May 13.

From the Departments of Neuroscience, Psychology, Drugs and Child Health,

Histamine, a major mediator in allergic diseases, differentially regulates the polarizing ability of dendritic cells after Toll-like receptor (TLR) stimulation, by not completely explained mechanisms. In this study we investigated the effects of histamine on innate immune reaction during the response of human monocyte-derived DCs (mDCs) to different TLR stimuli: LPS, specific for TLR4, and Pam3Cys, specific for heterodimer molecule TLR1/TLR2. We investigated actin remodeling induced by histamine together with mDCs phenotype, cytokine production, and the stimulatory and polarizing ability of Th0. By confocal microscopy and RT-PCR expression of Rac1/CdC42 Rho GTPases, responsible for actin remodeling, we show that histamine selectively modifies actin cytoskeleton organization induced by TLR4, but not TLR2 and this correlates with increased IL4 production and decreased IFNγ by primed T cells. We also demonstrate that histamine-induced cytoskeleton organization is at least in part mediated by down-regulation of small Rho GTPase CdC42 and the protein target PAK1, but not by down-regulation of Rac1. The presence and relative expression of histamine receptors HR1-4 and TLRs were determined as well. Independently of actin remodeling, histamine down-regulates IL12p70 and CXCL10 production in mDCs after TLR2 and TLR4 stimulation. We also observed a trend of IL10 up-regulation that, despite previous reports, did not reach statistical significance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M116.720680DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4938197PMC
July 2016

The polyphenol Oleuropein aglycone hinders the growth of toxic transthyretin amyloid assemblies.

J Nutr Biochem 2016 Apr 12;30:153-66. Epub 2016 Jan 12.

Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio"- Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy; Dipartimento di Medicina Molecolare, Istituto di Biochimica, Università degli Studi di Pavia, 27100, Pavia, Italy. Electronic address:

Transthyretin (TTR) is involved in a subset of familial or sporadic amyloid diseases including senile systemic amyloidosis (SSA), familial amyloid polyneuropathy and cardiomyopathy (FAP/FAC) for which no effective therapy has been found yet. These conditions are characterized by extracellular deposits primarily found in the heart parenchyma and in peripheral nerves whose main component are amyloid fibrils, presently considered the main culprits of cell sufferance. The latter are polymeric assemblies grown from misfolded TTR, either wt or carrying one out of many identified mutations. The recent introduction in the clinical practice of synthetic TTR-stabilizing molecules that reduce protein aggregation provides the rationale to search natural effective molecules able to interfere with TTR amyloid aggregation by hindering the appearance of toxic species or by favoring the growth of harmless aggregates. Here we carried out an in depth biophysical and morphological study on the molecular features of the aggregation of wt- and L55P-TTR involved in SSA or FAP/FAC, respectively, and on the interference with fibril aggregation, stability and toxicity to cardiac HL-1 cells to demonstrate the ability of Oleuropein aglycone (OleA), the main phenolic component of the extra virgin olive oil. We describe the molecular basis of such interference and the resulting reduction of TTR amyloid aggregate cytotoxicity. Our data offer the possibility to validate and optimize the use of OleA or its molecular scaffold to rationally design promising drugs against TTR-related pathologies that could enter a clinical experimental phase.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jnutbio.2015.12.009DOI Listing
April 2016

Molecular insights into cell toxicity of a novel familial amyloidogenic variant of β2-microglobulin.

J Cell Mol Med 2016 08 18;20(8):1443-56. Epub 2016 Mar 18.

Dipartimento di Scienze Biomediche, Sperimentali e Cliniche 'Mario Serio', Università degli Studi di Firenze, Firenze, Italy.

The first genetic variant of β2 -microglobulin (b2M) associated with a familial form of systemic amyloidosis has been recently described. The mutated protein, carrying a substitution of Asp at position 76 with an Asn (D76N b2M), exhibits a strongly enhanced amyloidogenic tendency to aggregate with respect to the wild-type protein. In this study, we characterized the D76N b2M aggregation path and performed an unprecedented analysis of the biochemical mechanisms underlying aggregate cytotoxicity. We showed that, contrarily to what expected from other amyloid studies, early aggregates of the mutant are not the most toxic species, despite their higher surface hydrophobicity. By modulating ganglioside GM1 content in cell membrane or synthetic lipid bilayers, we confirmed the pivotal role of this lipid as aggregate recruiter favouring their cytotoxicity. We finally observed that the aggregates bind to the cell membrane inducing an alteration of its elasticity (with possible functional unbalance and cytotoxicity) in GM1-enriched domains only, thus establishing a link between aggregate-membrane contact and cell damage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jcmm.12833DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4956941PMC
August 2016

Polyomavirus JC microRNA expression after infection in vitro.

Virus Res 2016 Feb 4;213:269-273. Epub 2016 Jan 4.

Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy. Electronic address:

The in vitro expression of the Polyomavirus JC (JCPyV) microRNAs, JC-miRNA-3p and -5p, at early time points post-infection was investigated. The expression of the JCPyV microRNAs was monitored in hematopoietic progenitor KG-1 cells and in kidney fibroblast-like COS-7 cells transformed with SV40 after infection with a JCPyV CY archetype viral clone. The JCPyV DNA viral load was low in KG-1 cells compared with that in COS-7 cells, which showed productive viral replication. The expression of the JCPyV microRNAs was observed from 12h after the viral infection of both cell types and in the exosomes present in their cell supernatant. Additionally, this study verified that the JCPyV microRNAs in the exosomes present in the supernatants produced by the infected cells might be carried into uninfected cells. These findings suggest that additional investigations of the expression of JCPyV microRNAs and their presence in exosomes are necessary to shed light on their regulatory role during viral reactivation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virusres.2015.11.026DOI Listing
February 2016

Clasmatodendrosis and β-amyloidosis in aging hippocampus.

FASEB J 2016 Apr 31;30(4):1480-91. Epub 2015 Dec 31.

*Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA

Alterations of the tightly interwoven neuron/astrocyte interactions are frequent traits of aging, but also favor neurodegenerative diseases, such as Alzheimer disease (AD). These alterations reflect impairments of the innate responses to inflammation-related processes, such as β-amyloid (Aβ) burdening. Multidisciplinary studies, spanning from the tissue to the molecular level, are needed to assess how neuron/astrocyte interactions are influenced by aging. Our study addressed this requirement by joining fluorescence-lifetime imaging microscopy/phasor multiphoton analysis with confocal microscopy, implemented with a novel method to separate spectrally overlapped immunofluorescence and Aβ autofluorescence. By comparing data from young control rats, chronically inflamed rats, and old rats, we identified age-specific alterations of neuron/astrocyte interactions in the hippocampus. We found a correlation between Aβ aggregation (+300 and +800% of aggregated Aβ peptide in chronically inflamed and oldvs.control rats, respectively) and fragmentation (clasmatodendrosis) of astrocyte projections (APJs) (+250 and +1300% of APJ fragments in chronically inflamed and oldvs.control rats, respectively). Clasmatodendrosis, in aged rats, associates with impairment of astrocyte-mediated Aβ clearance (-45% of Aβ deposits on APJs, and +33% of Aβ deposits on neurons in oldvs.chronically inflamed rats). Furthermore, APJ fragments colocalize with Aβ deposits and are involved in novel Aβ-mediated adhesions between neurons. These data define the effects of Aβ deposition on astrocyte/neuron interactions as a key topic in AD biology.-Mercatelli, R., Lana, D., Bucciantini, M., Giovannini, M. G., Cerbai, F., Quercioli, F., Zecchi-Orlandini, S., Delfino, G., Wenk, G. L., Nos, D. Clasmatodendrosis and β-amyloidosis in aging hippocampus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.15-275503DOI Listing
April 2016

Low intensity 635 nm diode laser irradiation inhibits fibroblast-myofibroblast transition reducing TRPC1 channel expression/activity: New perspectives for tissue fibrosis treatment.

Lasers Surg Med 2016 Mar 10;48(3):318-32. Epub 2015 Dec 10.

Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy.

Background And Objective: Low-level laser therapy (LLLT) or photobiomodulation therapy is emerging as a promising new therapeutic option for fibrosis in different damaged and/or diseased organs. However, the anti-fibrotic potential of this treatment needs to be elucidated and the cellular and molecular targets of the laser clarified. Here, we investigated the effects of a low intensity 635 ± 5 nm diode laser irradiation on fibroblast-myofibroblast transition, a key event in the onset of fibrosis, and elucidated some of the underlying molecular mechanisms.

Materials And Methods: NIH/3T3 fibroblasts were cultured in a low serum medium in the presence of transforming growth factor (TGF)-β1 and irradiated with a 635 ± 5 nm diode laser (continuous wave, 89 mW, 0.3 J/cm(2) ). Fibroblast-myofibroblast differentiation was assayed by morphological, biochemical, and electrophysiological approaches. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 and of Tissue inhibitor of MMPs, namely TIMP-1 and TIMP-2, after laser exposure was also evaluated by confocal immunofluorescence analyses. Moreover, the effect of the diode laser on transient receptor potential canonical channel (TRPC) 1/stretch-activated channel (SAC) expression and activity and on TGF-β1/Smad3 signaling was investigated.

Results: Diode laser treatment inhibited TGF-β1-induced fibroblast-myofibroblast transition as judged by reduction of stress fibers formation, α-smooth muscle actin (sma) and type-1 collagen expression and by changes in electrophysiological properties such as resting membrane potential, cell capacitance and inwardly rectifying K(+) currents. In addition, the irradiation up-regulated the expression of MMP-2 and MMP-9 and downregulated that of TIMP-1 and TIMP-2 in TGF-β1-treated cells. This laser effect was shown to involve TRPC1/SAC channel functionality. Finally, diode laser stimulation and TRPC1 functionality negatively affected fibroblast-myofibroblast transition by interfering with TGF-β1 signaling, namely reducing the expression of Smad3, the TGF-β1 downstream signaling molecule.

Conclusion: Low intensity irradiation with 635 ± 5 nm diode laser inhibited TGF-β1/Smad3-mediated fibroblast-myofibroblast transition and this effect involved the modulation of TRPC1 ion channels. These data contribute to support the potential anti-fibrotic effect of LLLT and may offer further informations for considering this therapy as a promising therapeutic tool for the treatment of tissue fibrosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/lsm.22441DOI Listing
March 2016

Ultrastructural Evidence of Serous Gland Polymorphism in the Skin of the Tungara Frog Engystomops pustulosus (Anura Leptodactylidae).

Anat Rec (Hoboken) 2015 Sep 16;298(9):1659-67. Epub 2015 Jul 16.

Dipartimento Di Medicina Sperimentale E Clinica, Università Degli Studi Di Firenze, Florence, Italy.

Three types of serous products were detected in the syncytial cutaneous glands of the leptodactylid tungara frog, Engystomops pustulosus: type Ia, granules with wide halos and variable density cores; type Ib, high density granules without halos; and type II, vesicles containing a finely dispersed product. Ultrastructural evidence revealed that these products were manufactured by different serous gland types and excluded that they represented different steps in the secretory cycle of a single gland type. Indeed, secretory maturation affecting the products released by the Golgi apparatus proceeded through different mechanisms: confluence (vesicles), interactions between syncytium and secretory product (type Ib granules), and a combination of both processes (type Ia granules). In conclusion, this investigation of secretory maturation was shown to be a suitable approach for the identification of serous gland polymorphism and demonstrated that the tungara frog belongs to the minority of anuran species characterized by this peculiar morpho-functional trait.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.23189DOI Listing
September 2015

Mitochondria of a human multidrug-resistant hepatocellular carcinoma cell line constitutively express inducible nitric oxide synthase in the inner membrane.

J Cell Mol Med 2015 Jun 18;19(6):1410-7. Epub 2015 Feb 18.

Department of Experimental and Clinical Medicine - Section of Internal Medicine and Hepatology, University of Florence and Azienda Ospedaliero Universitaria Careggi, Florence, Italy.

Mitochondria play a crucial role in pathways of stress conditions. They can be transported from one cell to another, bringing their features to the cell where they are transported. It has been shown in cancer cells overexpressing multidrug resistance (MDR) that mitochondria express proteins involved in drug resistance such as P-glycoprotein (P-gp), breast cancer resistant protein and multiple resistance protein-1. The MDR phenotype is associated with the constitutive expression of COX-2 and iNOS, whereas celecoxib, a specific inhibitor of COX-2 activity, reverses drug resistance of MDR cells by releasing cytochrome c from mitochondria. It is possible that COX-2 and iNOS are also expressed in mitochondria of cancer cells overexpressing the MDR phenotype. This study involved experiments using the human HCC PLC/PRF/5 cell line with and without MDR phenotype and melanoma A375 cells that do not express the MDR1 phenotype but they do iNOS. Western blot analysis, confocal immunofluorescence and immune electron microscopy showed that iNOS is localized in mitochondria of MDR1-positive cells, whereas COX-2 is not. Low and moderate concentrations of celecoxib modulate the expression of iNOS and P-gp in mitochondria of MDR cancer cells independently from inhibition of COX-2 activity. However, A375 cells that express iNOS also in mitochondria, were not MDR1 positive. In conclusion, iNOS can be localized in mitochondria of HCC cells overexpressing MDR1 phenotype, however this phenomenon appears independent from the MDR1 phenotype occurrence. The presence of iNOS in mitochondria of human HCC cells phenotype probably concurs to a more aggressive behaviour of cancer cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jcmm.12528DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459854PMC
June 2015

MSCs seeded on bioengineered scaffolds improve skin wound healing in rats.

Wound Repair Regen 2015 Jan-Feb;23(1):115-23. Epub 2015 Feb 26.

Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy.

Growing evidence has shown the promise of mesenchymal stromal cells (MSCs) for the treatment of cutaneous wound healing. We have previously demonstrated that MSCs seeded on an artificial dermal matrix, Integra (Integra Lifesciences Corp., Plainsboro, NJ) enriched with platelet-rich plasma (Ematrix) have enhanced proliferative potential in vitro as compared with those cultured on the scaffold alone. In this study, we extended the experimentation by evaluating the efficacy of the MSCs seeded scaffolds in the healing of skin wounds in an animal model in vivo. It was found that the presence of MSCs within the scaffolds greatly ameliorated the quality of regenerated skin, reduced collagen deposition, enhanced reepithelization, increased neo-angiogenesis, and promoted a greater return of hair follicles and sebaceous glands. The mechanisms involved in these beneficial effects were likely related to the ability of MSCs to release paracrine factors modulating the wound healing response. MSC-seeded scaffolds, in fact, up-regulated matrix metalloproteinase 9 expression in the extracellular matrix and enhanced the recruitment of endogenous progenitors during tissue repair. In conclusion, the results of this study provide evidence that the treatment with MSC-seeded scaffolds of cutaneous wounds contributes to the recreation of a suitable microenvironment for promoting tissue repair/regeneration at the implantation sites.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/wrr.12251DOI Listing
March 2016

The neuron-astrocyte-microglia triad in a rat model of chronic cerebral hypoperfusion: protective effect of dipyridamole.

Front Aging Neurosci 2014 27;6:322. Epub 2014 Nov 27.

Section of Pharmacology and Clinical Oncology, Department of Health Sciences, University of Florence Florence, Italy.

Chronic cerebral hypoperfusion during aging may cause progressive neurodegeneration as ischemic conditions persist. Proper functioning of the interplay between neurons and glia is fundamental for the functional organization of the brain. The aim of our research was to study the pathophysiological mechanisms, and particularly the derangement of the interplay between neurons and astrocytes-microglia with the formation of "triads," in a model of chronic cerebral hypoperfusion induced by the two-vessel occlusion (2VO) in adult Wistar rats (n = 15). The protective effect of dipyridamole given during the early phases after 2VO (4 mg/kg/day i.v., the first 7 days after 2VO) was verified (n = 15). Sham-operated rats (n = 15) were used as controls. Immunofluorescent triple staining of neurons (NeuN), astrocytes (GFAP), and microglia (IBA1) was performed 90 days after 2VO. We found significantly higher amount of "ectopic" neurons, neuronal debris and apoptotic neurons in CA1 Str. Radiatum and Str. Pyramidale of 2VO rats. In CA1 Str. Radiatum of 2VO rats the amount of astrocytes (cells/mm(2)) did not increase. In some instances several astrocytes surrounded ectopic neurons and formed a "micro scar" around them. Astrocyte branches could infiltrate the cell body of ectopic neurons, and, together with activated microglia cells formed the "triads." In the triad, significantly more numerous in CA1 Str. Radiatum of 2VO than in sham rats, astrocytes and microglia cooperated in the phagocytosis of ectopic neurons. These events might be common mechanisms underlying many neurodegenerative processes. The frequency to which they appear might depend upon, or might be the cause of, the burden and severity of neurodegeneration. Dypiridamole significantly reverted all the above described events. The protective effect of chronic administration of dipyridamole might be a consequence of its vasodilatory, antioxidant and anti-inflammatory role during the early phases after 2VO.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnagi.2014.00322DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245920PMC
December 2014