Publications by authors named "Daniela Vogt-Weisenhorn"

38 Publications

Human Dopaminergic Neurons Lacking PINK1 Exhibit Disrupted Dopamine Metabolism Related to Vitamin B6 Co-Factors.

iScience 2020 Dec 13;23(12):101797. Epub 2020 Nov 13.

Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried Müller Strasse 27, 72076, Tübingen, Germany.

PINK1 loss-of-function mutations cause early onset Parkinson disease. PINK1-Parkin mediated mitophagy has been well studied, but the relevance of the endogenous process in the brain is debated. Here, the absence of PINK1 in human dopaminergic neurons inhibits ionophore-induced mitophagy and reduces mitochondrial membrane potential. Compensatory, mitochondrial renewal maintains mitochondrial morphology and protects the respiratory chain. This is paralleled by metabolic changes, including inhibition of the TCA cycle enzyme Aconitase, accumulation of NAD, and metabolite depletion. Loss of PINK1 disrupts dopamine metabolism by critically affecting its synthesis and uptake. The mechanism involves steering of key amino acids toward energy production rather than neurotransmitter metabolism and involves cofactors related to the vitamin B6 salvage pathway identified using unbiased multi-omics approaches. We propose that reduction of mitochondrial membrane potential that cannot be controlled by PINK1 signaling initiates metabolic compensation that has neurometabolic consequences relevant to Parkinson disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isci.2020.101797DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7702004PMC
December 2020

Dose-dependent long-term effects of a single radiation event on behaviour and glial cells.

Int J Radiat Biol 2021 15;97(2):156-169. Epub 2020 Dec 15.

Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.

Purpose: The increasing use of low-dose ionizing radiation in medicine requires a systematic study of its long-term effects on the brain, behaviour and its possible association with neurodegenerative disease vulnerability. Therefore, we analysed the long-term effects of a single low-dose irradiation exposure at 10 weeks of age compared to medium and higher doses on locomotor, emotion-related and sensorimotor behaviour in mice as well as on hippocampal glial cell populations.

Materials And Methods: We determined the influence of radiation dose (0, 0.063, 0.125 or 0.5 Gy), time post-irradiation (4, 12 and 18 months p.i.), sex and genotype (wild type versus mice with DNA repair gene point mutation) on behaviour.

Results: The high dose (0.5 Gy) had early-onset adverse effects at 4 months p.i. on sensorimotor recruitment and late-onset negative locomotor effects at 12 and 18 months p.i. Notably, the low dose (0.063 Gy) produced no early effects but subtle late-onset (18 months) protective effects on sensorimotor recruitment and exploratory behaviour. Quantification and morphological characterization of the microglial and the astrocytic cells of the dentate gyrus 24 months p.i. indicated heightened immune activity after high dose irradiation (0.125 and 0.5 Gy) while conversely, low dose (0.063 Gy) induced more neuroprotective features.

Conclusion: This is one of the first studies demonstrating such long-term and late-onset effects on brain and behaviour after a single radiation event in adulthood.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/09553002.2021.1857455DOI Listing
December 2020

β-catenin signaling modulates the tempo of dendritic growth of adult-born hippocampal neurons.

EMBO J 2020 11 15;39(21):e104472. Epub 2020 Sep 15.

Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.

In adult hippocampal neurogenesis, stem/progenitor cells generate dentate granule neurons that contribute to hippocampal plasticity. The establishment of a morphologically defined dendritic arbor is central to the functional integration of adult-born neurons. We investigated the role of canonical Wnt/β-catenin signaling in dendritogenesis of adult-born neurons. We show that canonical Wnt signaling follows a biphasic pattern, with high activity in stem/progenitor cells, attenuation in immature neurons, and reactivation during maturation, and demonstrate that this activity pattern is required for proper dendrite development. Increasing β-catenin signaling in maturing neurons of young adult mice transiently accelerated dendritic growth, but eventually produced dendritic defects and excessive spine numbers. In middle-aged mice, in which protracted dendrite and spine development were paralleled by lower canonical Wnt signaling activity, enhancement of β-catenin signaling restored dendritic growth and spine formation to levels observed in young adult animals. Our data indicate that precise timing and strength of β-catenin signaling are essential for the correct functional integration of adult-born neurons and suggest Wnt/β-catenin signaling as a pathway to ameliorate deficits in adult neurogenesis during aging.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.15252/embj.2020104472DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604596PMC
November 2020

A patient-based model of RNA mis-splicing uncovers treatment targets in Parkinson's disease.

Sci Transl Med 2020 09;12(560)

ICGEB-International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy.

Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with monogenic forms representing prototypes of the underlying molecular pathology and reproducing to variable degrees the sporadic forms of the disease. Using a patient-based in vitro model of -linked PD, we identified a U1-dependent splicing defect causing a drastic reduction in DJ-1 protein and, consequently, mitochondrial dysfunction. Targeting defective exon skipping with genetically engineered U1-snRNA recovered DJ-1 protein expression in neuronal precursor cells and differentiated neurons. After prioritization of candidate drugs, we identified and validated a combinatorial treatment with the small-molecule compounds rectifier of aberrant splicing (RECTAS) and phenylbutyric acid, which restored DJ-1 protein and mitochondrial dysfunction in patient-derived fibroblasts as well as dopaminergic neuronal cell loss in mutant midbrain organoids. Our analysis of a large number of exomes revealed that U1 splice-site mutations were enriched in sporadic PD patients. Therefore, our study suggests an alternative strategy to restore cellular abnormalities in in vitro models of PD and provides a proof of concept for neuroprotection based on precision medicine strategies in PD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.aau3960DOI Listing
September 2020

The Parkinson's disease-linked Leucine-rich repeat kinase 2 (LRRK2) is required for insulin-stimulated translocation of GLUT4.

Sci Rep 2019 03 14;9(1):4515. Epub 2019 Mar 14.

Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, University Clinic Tuebingen, Tuebingen, Germany.

Mutations within Leucine-rich repeat kinase 2 (LRRK2) are associated with late-onset Parkinson's disease. The physiological function of LRRK2 and molecular mechanism underlying the pathogenic role of LRRK2 mutations remain uncertain. Here, we investigated the role of LRRK2 in intracellular signal transduction. We find that deficiency of Lrrk2 in rodents affects insulin-dependent translocation of glucose transporter type 4 (GLUT4). This deficit is restored during aging by prolonged insulin-dependent activation of protein kinase B (PKB, Akt) and Akt substrate of 160 kDa (AS160), and is compensated by elevated basal expression of GLUT4 on the cell surface. Furthermore, we find a crucial role of Rab10 phosphorylation by LRRK2 for efficient insulin signal transduction. Translating our findings into human cell lines, we find comparable molecular alterations in fibroblasts from Parkinson's patients with the known pathogenic G2019S LRRK2 mutation. Our results highlight the role of LRRK2 in insulin-dependent signalling with potential therapeutic implications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-40808-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418296PMC
March 2019

Epigenome-wide DNA methylation profiling in Progressive Supranuclear Palsy reveals major changes at DLX1.

Nat Commun 2018 07 26;9(1):2929. Epub 2018 Jul 26.

Institute of Human Genetics, Justus-Liebig-Universität, Gießen, 35392, Germany.

Genetic, epigenetic, and environmental factors contribute to the multifactorial disorder progressive supranuclear palsy (PSP). Here, we study epigenetic changes by genome-wide analysis of DNA from postmortem tissue of forebrains of patients and controls and detect significant (P < 0.05) methylation differences at 717 CpG sites in PSP vs. controls. Four-hundred fifty-one of these sites are associated with protein-coding genes. While differential methylation only affects a few sites in most genes, DLX1 is hypermethylated at multiple sites. Expression of an antisense transcript of DLX1, DLX1AS, is reduced in PSP brains. The amount of DLX1 protein is increased in gray matter of PSP forebrains. Pathway analysis suggests that DLX1 influences MAPT-encoded Tau protein. In a cell system, overexpression of DLX1 results in downregulation of MAPT while overexpression of DLX1AS causes upregulation of MAPT. Our observations suggest that altered DLX1 methylation and expression contribute to pathogenesis of PSP by influencing MAPT.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-05325-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062504PMC
July 2018

Determination of thyroid hormones in placenta using isotope-dilution liquid chromatography quadrupole time-of-flight mass spectrometry.

J Chromatogr A 2018 Jan 24;1534:85-92. Epub 2017 Dec 24.

Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Molecular EXposomics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.

The transplacental passage of thyroid hormones (THs) is of great significance since the maternal THs are vitally important in ensuring the normal fetal development. In this paper, we determined the concentrations of seven THs, viz. L-thyroxine (T), 3,3',5-triiodo-l-thyronine (T), 3,3',5'-triiodo-l-thyronine (rT), 3,3'-diiodo-l-thyronine (T), 3,5-diiodo-l-thyronine (rT), 3-iodo-l-thyronine (T) and 3-iodothyronamine (TAM), in placenta using isotope dilution liquid chromatography quadrupole time-of-flight mass spectrometry. We optimized the method using isotopically labeled quantification standards (C-T, C-T, C-rT and C-T) and recovery standard (C-T) in combination with solid-liquid extraction, liquid-liquid extraction and solid phase extraction. The linearity was obtained in the range of 0.5-150 pg uL with R values >0.99. The method detection limits (MDLs) ranged from 0.01 ng g to 0.2 ng g, while the method quantification limits (MQLs) were between 0.04 ng g and 0.7 ng g. The spike-recoveries for THs (except for T and TAM) were in the range of 81.0%-112%, with a coefficient of variation (CV) of 0.5-6.2%. The intra-day CVs and inter-day CVs were 0.5%-10.3% and 1.19%-8.88%, respectively. Concentrations of the THs were 22.9-35.0 ng g T, 0.32-0.46 ng g T, 2.86-3.69 ng g rT, 0.16-0.26 ng g T, and < MDL for other THs in five human placentas, and 2.05-3.51 ng g T, 0.37-0.62 ng g T, 0.96-1.3 ng g rT, 0.07-0.13 ng g T and < MDL for other THs in five mouse placentas. The presence of T was tracked in placenta for the first time. This method with improved selectivity and sensitivity allows comprehensive evaluation of TH homeostasis in research of metabolism and effects of environmental contaminant exposures.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2017.12.048DOI Listing
January 2018

Alterations in neuronal control of body weight and anxiety behavior by glutathione peroxidase 4 deficiency.

Neuroscience 2017 08 13;357:241-254. Epub 2017 Jun 13.

Research Unit NeuroBiology of Diabetes, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg 85764, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg 85764, Germany; German Center for Diabetes Research (DZD), Neuherberg 85764, Germany. Electronic address:

Elevated levels of oxidative stress and neuronal inflammation in the hypothalamus or ventral midbrain, respectively, represent common denominators for obesity and Parkinson's Disease (PD). However, little is known about defense mechanisms that protect neurons in these regions from oxidative damage. Here, we aimed to assess whether murine Gpx4, a crucial antioxidant enzyme that protects neurons from membrane damage and ferroptosis, is critical for the protection from neuronal inflammation in two distinct pathophysiologic diseases, namely metabolic dysfunction in diet-induced obesity or PD. Gpx4 was deleted from either AgRP or POMC neurons in the hypothalamus, essential for metabolic homeostasis, or from dopaminergic neurons in the ventral midbrain, governing behaviors such as anxiety or voluntary movement. To induce a pro-inflammatory environment, AgRP and POMC neuron-specific Gpx4 knockout mice were subjected to high-fat high-sucrose (HFHS) diet. To exacerbate oxidative stress in dopaminergic neurons of the ventral midbrain, we systemically co-deleted the PD-related gene DJ-1. Gpx4 was dispensable for the maintenance of cellular health and function of POMC neurons, even in mice exposed to obesogenic conditions. In contrast, HFHS-fed mice with Gpx4 deletion from AgRP neurons displayed increased body adiposity. Gpx4 expression and activity were diminished in the hypothalamus of HFHS-fed mice compared to standard diet-fed controls. Gpx4 deletion from dopaminergic neurons induced anxiety behavior, and diminished spontaneous locomotor activity when DJ-1 was co-deleted. Overall, these data suggest a physiological role for Gpx4 in balancing metabolic control signals and inflammation in AgRP but not POMC neurons. Moreover, Gpx4 appears to constitute an important rheostat against neuronal dysfunction and PD-like symptoms in dopaminergic circuitry within the ventral midbrain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2017.05.050DOI Listing
August 2017

Analysis of locomotor behavior in the German Mouse Clinic.

J Neurosci Methods 2018 04 5;300:77-91. Epub 2017 May 5.

German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstaedter Landstr.1, 85764 Neuherberg, Germany.

Background: Generation and phenotyping of mutant mouse models continues to increase along with the search for the most efficient phenotyping tests. Here we asked if a combination of different locomotor tests is necessary for comprehensive locomotor phenotyping, or if a large data set from an automated gait analysis with the CatWalk system would suffice.

New Method: First we endeavored to meaningfully reduce the large CatWalk data set by Principal Component Analysis (PCA) to decide on the most relevant parameters. We analyzed the influence of sex, body weight, genetic background and age. Then a combination of different locomotor tests was analyzed to investigate the possibility of redundancy between tests.

Result: The extracted 10 components describe 80% of the total variance in the CatWalk, characterizing different aspects of gait. With these, effects of CatWalk version, sex, body weight, age and genetic background were detected. In addition, the PCA on a combination of locomotor tests suggests that these are independent without significant redundancy in their locomotor measures.

Comparison With Existing Methods: The PCA has permitted the refinement of the highly dimensional CatWalk (and other tests) data set for the extraction of individual component scores and subsequent analysis.

Conclusion: The outcome of the PCA suggests the possibility to focus on measures of the front and hind paws, and one measure of coordination in future experiments to detect phenotypic differences. Furthermore, although the CatWalk is sensitive for detecting locomotor phenotypes pertaining to gait, it is necessary to include other tests for comprehensive locomotor phenotyping.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2017.05.005DOI Listing
April 2018

Determination of thyroid hormones in mouse tissues by isotope-dilution microflow liquid chromatography-mass spectrometry method.

J Chromatogr B Analyt Technol Biomed Life Sci 2016 Oct 26;1033-1034:413-420. Epub 2016 Aug 26.

Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Molecular EXposomics, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Department für Biowissenschaften, Weihenstephaner Steig 23, 85350 Freising, Germany.

Thyroid hormones (THs) play a critical role in the regulation of many biological processes such as growth, metabolism and development both in humans and wildlife. In general, TH levels are measured by immunoassay (IA) methods but the specificity of the antibodies used in these assays limits selectivity. In the last decade, several analytical methods using liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/MS) have been developed to measure THs. These new techniques proved to be more accurate than the IA analysis and they were widely used for the determination of TH level in different human and animal tissues. A large part of LC-MS/MS methods described in literature employed between 200 and 500mg of sample, however this quantity can be considered too high especially when preclinical studies are conducted using mice as test subjects. Thus an analytical method that reduces the amount of tissue is essential. In this study, we developed a procedure for the analysis of six THs; L-thyroxine (T4), 3,3',5-triiodo-l-thyronine (T3), 3,3',5'-triiodo-l-thyronine (rT3), 3,5-diiodo-l-thyronine (rT2), 3,3'-diiodo-l-thyronine (T2), 3-iodo-l-thyronine (T1) using isotope ((13)C6-T4, (13)C6-T3, (13)C6-rT3, (13)C6-T2) dilution liquid chromatography-mass spectrometry. The major difference with previously described methods lies in the utilization of a nano-UPLC (Ultra Performance Liquid Chromatography) system in micro configuration. This approach leads to a reduction compared to the published methods, of column internal diameter, flow rate, and injected volume. The result of all these improvements is a decrease in the amount of sample necessary for the analysis. The method was tested on six different mouse tissues: liver, heart, kidney, muscle, lung and brown adipose tissue (BAT). The nano-UPLC system was interfaced with a quadrupole time-of-flight mass spectrometer (Q-TOF2-MS) using the positive ion mode electrospray ionization. In our analytical method the instrumental calibration curves were constructed from 0 to 100pgμL(-1) and all of them showed good linearity (r(2)>0.99). The limit of quantification was from 2.5 to 5pg injected into the column. The method recoveries calculated using spiked mouse liver and spiked mouse muscle were between 83% and 118% (except T1 and rT2 at high concentration) with a coefficient of variation (CV) of <10% for all derivatives. The new methodology allows us to measure T4 and T3 concentrations in a range from 21 to about 100mg and give a more extensive insight on thyroid hormone concentration in different mouse tissue.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2016.08.037DOI Listing
October 2016

Diversity matters - heterogeneity of dopaminergic neurons in the ventral mesencephalon and its relation to Parkinson's Disease.

J Neurochem 2016 10 27;139 Suppl 1:8-26. Epub 2016 Jun 27.

Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany.

Dopaminergic neurons in the ventral mesencephalon (the ventral mesencephalic dopaminergic complex) are known for their role in a multitude of behaviors, including cognition, reward, addiction and voluntary movement. Dysfunctions of these neurons are the underlying cause of various neuropsychiatric disorders, such as depression, addiction and schizophrenia. In addition, Parkinson's disease (PD), which is the second most common degenerative disease in developed countries, is characterized by the degeneration of dopaminergic neurons, leading to the core motor symptoms of the disease. However, only a subset of dopaminergic neurons in the ventral mesencephalon is highly vulnerable to the disease process. Indeed, research over several decades revealed that the neurons in the ventral mesencephalic dopaminergic complex do not form a homogeneous group with respect to anatomy, physiology, function, molecular identity or vulnerability/dysfunction in different diseases. Here, we review how the concept of dopaminergic neuron diversity, assisted by the advent and application of new technologies, evolved and was refined over time and how it shaped our understanding of PD pathogenesis. Understanding this diversity of neurons in the ventral mesencephalic dopaminergic complex at all levels is imperative for the development of new and more selective drugs for both PD and various other neuropsychiatric diseases. Several decades of research revealed that the neurons in the ventral mesencephalic dopaminergic complex do not form a homogeneous group in respect to anatomy, physiology, function, molecular identity or vulnerability/dysfunction in diseases like Parkinson's disease (PD). Here, we review how this concept evolved and was refined over time and how it shaped our understanding of the pathogenesis of PD. Source of the midbrain image: www.wikimd.org/wiki/index.php/The_Midbrain_or_Mesencephalon; downloaded 28.01.2016. See also Figures and of the paper. This article is part of a special issue on Parkinson disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.13670DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5096020PMC
October 2016

Conditional Reduction of Adult Born Doublecortin-Positive Neurons Reversibly Impairs Selective Behaviors.

Front Behav Neurosci 2015 12;9:302. Epub 2015 Nov 12.

Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany ; German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany.

Adult neurogenesis occurs in the adult mammalian subventricular zone (SVZ) along the walls of the lateral ventricles and the subgranular zone (SGZ) of the hippocampal dentate gyrus. While a burgeoning body of research implicates adult neurogenesis in olfactory bulb (OB)- and hippocampal-related behaviors, the precise function continues to elude. To further assess the behavioral importance of adult neurogenesis, we herein generated a novel inducible transgenic mouse model of adult neurogenesis reduction where mice with CreER(T2) under doublecortin (DCX) promoter control were crossed with mice where diphtheria toxin A (DTA) was driven by the Rosa26 promoter. Activation of DTA, through the administration of tamoxifen (TAM), results in a specific reduction of DCX+ immature neurons in both the hippocampal dentate gyrus and OB. We show that the decrease of DCX+ cells causes impaired social discrimination ability in both young adult (from 3 months) and middle aged (from 10 months) mice. Furthermore, these animals showed an age-independent altered coping behavior in the Forced Swim Test without clear changes in anxiety-related behavior. Notably, these behavior changes were reversible on repopulating the neurogenic zones with DCX+ cells on cessation of the TAM treatment, demonstrating the specificity of this effect. Overall, these results support the notion that adult neurogenesis plays a role in social memory and in stress coping but not necessarily in anxiety-related behavior.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnbeh.2015.00302DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642364PMC
November 2015

Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics.

Nat Genet 2015 Sep 27;47(9):969-978. Epub 2015 Jul 27.

Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany.

The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no previous functional annotation. We captured data from over 27,000 mice, finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. New phenotypes were uncovered for many genes with previously unknown function, providing a powerful basis for hypothesis generation and further investigation in diverse systems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3360DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4564951PMC
September 2015

A WNT1-regulated developmental gene cascade prevents dopaminergic neurodegeneration in adult En1(+/-) mice.

Neurobiol Dis 2015 Oct 3;82:32-45. Epub 2015 Jun 3.

Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany. Electronic address:

The protracted and age-dependent degeneration of dopamine (DA)-producing neurons of the Substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) in the mammalian midbrain is a hallmark of human Parkinson's Disease (PD) and of certain genetic mouse models of PD, such as mice heterozygous for the homeodomain transcription factor Engrailed 1 (En1(+/-) mice). Neurotoxin-based animal models of PD, in contrast, are characterized by the fast and partly reversible degeneration of the SNc and VTA DA neurons. The secreted protein WNT1 was previously shown to be strongly induced in the neurotoxin-injured adult ventral midbrain (VM), and to protect the SNc and VTA DA neurons from cell death in this context. We demonstrate here that the sustained and ectopic expression of Wnt1 in the SNc and VTA DA neurons of En1(+/Wnt1) mice also protected these genetically affected En1 heterozygote (En1(+/-)) neurons from their premature degeneration in the adult mouse VM. We identified a developmental gene cascade that is up-regulated in the adult En1(+/Wnt1) VM, including the direct WNT1/β-catenin signaling targets Lef1, Lmx1a, Fgf20 and Dkk3, as well as the indirect targets Pitx3 (activated by LMX1A) and Bdnf (activated by PITX3). We also show that the secreted neurotrophin BDNF and the secreted WNT modulator DKK3, but not the secreted growth factor FGF20, increased the survival of En1 mutant dopaminergic neurons in vitro. The WNT1-mediated signaling pathway and its downstream targets BDNF and DKK3 might thus provide a useful means to treat certain genetic and environmental (neurotoxic) forms of human PD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2015.05.015DOI Listing
October 2015

Neddylation inhibition impairs spine development, destabilizes synapses and deteriorates cognition.

Nat Neurosci 2015 Feb 12;18(2):239-51. Epub 2015 Jan 12.

Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany.

Neddylation is a ubiquitylation-like pathway that controls cell cycle and proliferation by covalently conjugating Nedd8 to specific targets. However, its role in neurons, nonreplicating postmitotic cells, remains unexplored. Here we report that Nedd8 conjugation increased during postnatal brain development and is active in mature synapses, where many proteins are neddylated. We show that neddylation controls spine development during neuronal maturation and spine stability in mature neurons. We found that neddylated PSD-95 was present in spines and that neddylation on Lys202 of PSD-95 is required for the proactive role of the scaffolding protein in spine maturation and synaptic transmission. Finally, we developed Nae1(CamKIIα-CreERT2) mice, in which neddylation is conditionally ablated in adult excitatory forebrain neurons. These mice showed synaptic loss, impaired neurotransmission and severe cognitive deficits. In summary, our results establish neddylation as an active post-translational modification in the synapse regulating the maturation, stability and function of dendritic spines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nn.3912DOI Listing
February 2015

Expression analysis of Lrrk1, Lrrk2 and Lrrk2 splice variants in mice.

PLoS One 2013 10;8(5):e63778. Epub 2013 May 10.

German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany.

Missense mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are linked to autosomal dominant forms of Parkinson's disease (PD). In order to get insights into the physiological role of Lrrk2, we examined the distribution of Lrrk2 mRNA and different splice variants in the developing murine embryo and the adult brain of Mus musculus. To analyse if the Lrrk2-paralog, Lrrk1, may have redundant functions in PD-development, we also compared Lrrk1 and Lrrk2 expression in the same tissues. Using radioactive in situ hybridization, we found ubiquitous expression of both genes at low level from embryonic stage E9.5 onward, which progressively increased up until birth. The developing central nervous system (CNS) displayed no prominent Lrrk2 mRNA signals at these time-points. However, in the entire postnatal brain Lrrk2 became detectable, showing strongest level in the striatum and the cortex of adult mice; Lrrk1 was only detectable in the mitral cell layer of the olfactory bulb. Thus, due to the non-overlapping expression patterns, a redundant function of Lrrk2 and Lrrk1 in the pathogenesis of PD seems to be unlikely. Quantification of Lrrk2 mRNA and protein level in several brain regions by real-time PCR and Western blot verified the striatum and cortex as hotspots of postnatal Lrrk2 expression. Strong expression of Lrrk2 is mainly found in neurons, specifically in the dopamine receptor 1 (DRD1a) and 2 (DRD2)-positive subpopulations of the striatal medium spiny neurons. Finally, we identified 2 new splice-variants of Lrrk2 in RNA-samples from various adult brain regions and organs: a variant with a skipped exon 5 and a truncated variant terminating in an alternative exon 42a. In order to identify the origin of these two splice variants, we also analysed primary neural cultures independently and found cell-specific expression patterns for these variants in microglia and astrocytes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0063778PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651128PMC
December 2013

Pink1-deficiency in mice impairs gait, olfaction and serotonergic innervation of the olfactory bulb.

Exp Neurol 2012 May 11;235(1):214-27. Epub 2012 Jan 11.

Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.

Parkinson's Disease (PD) is the most common neurodegenerative movement disorder. Autosomal-recessive mutations in the mitochondrial protein kinase PINK1 (PTEN-induced kinase 1) account for 1-2% of the hereditary early-onset cases. To study the mechanisms underlying disease development, we generated Pink1-deficient mice. In analogy to other genetic loss-of-function mouse models, Pink1(-/-) mice did not show morphological alterations in the dopaminergic system. As a consequence, no gross motor dysfunctions were observed indicating that these mice do not develop the cardinal symptoms of PD. Nonetheless, symptoms which develop mainly before bradykinesia, rigidity and resting tremor were clearly evident in Pink1-deficient mice. These symptoms were gait alterations and olfactory dysfunctions. Remarkably in the glomerular layer of the olfactory bulb the density of serotonergic fibers was significantly reduced. Concerning mitochondrial morphology, neurons in Pink1(-/-) mice had less fragmented mitochondria. In contrast, upon acute knock-down of Pink1 increased mitochondrial fragmentation was observed in neuronal cultures. This fragmentation was, however, evened out within days. Taken together, we demonstrate that Pink1-deficient mice exhibit behavioral symptoms of early phases of PD and present systematic experimental evidence for compensation of Pink1-deficiency at the cellular level. Thus, Pink1-deficient mice represent a model for the early phases of PD in which compensation may still impede the onset of neurodegeneration. Consequently, these mice are a valuable tool for studying Pink1-related PD development, as well as for searching for reliable PD biomarkers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2012.01.002DOI Listing
May 2012

Telomere shortening reduces Alzheimer's disease amyloid pathology in mice.

Brain 2011 Jul 14;134(Pt 7):2044-56. Epub 2011 Jun 14.

Department of Molecular Medicine and Max-Planck-Research Department for Stem Cell Aging, University of Ulm, D-89081 Ulm, Germany.

Alzheimer's disease is a neurodegenerative disorder of the elderly and advancing age is the major risk factor for Alzheimer's disease development. Telomere shortening represents one of the molecular causes of ageing that limits the proliferative capacity of cells, including neural stem cells. Studies on telomere lengths in patients with Alzheimer's disease have revealed contrary results and the functional role of telomere shortening on brain ageing and Alzheimer's disease is not known. Here, we have investigated the effects of telomere shortening on adult neurogenesis and Alzheimer's disease progression in mice. The study shows that aged telomerase knockout mice with short telomeres (G3Terc-/-) exhibit reduced dentate gyrus neurogenesis and loss of neurons in hippocampus and frontal cortex, associated with short-term memory deficit in comparison to mice with long telomere reserves (Terc+/+). In contrast, telomere shortening improved the spatial learning ability of ageing APP23 transgenic mice, a mouse model for Alzheimer's disease. Telomere shortening was also associated with an activation of microglia in ageing amyloid-free brain. However, in APP23 transgenic mice, telomere shortening reduced both amyloid plaque pathology and reactive microgliosis. Together, these results provide the first experimental evidence that telomere shortening, despite impairing adult neurogenesis and maintenance of post-mitotic neurons, can slow down the progression of amyloid plaque pathology in Alzheimer's disease, possibly involving telomere-dependent effects on microglia activation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awr133DOI Listing
July 2011

LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool.

J Neurosci 2011 Feb;31(6):2225-37

Department of Protein Science and Institute of Developmental Genetics, Helmholtz Zentrum München, D-85764 Munich, Germany.

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the single most common cause of inherited Parkinson's disease. Little is known about its involvement in the pathogenesis of Parkinson's disease mainly because of the lack of knowledge about the physiological role of LRRK2. To determine the function of LRRK2, we studied the impact of short hairpin RNA-mediated silencing of LRRK2 expression in cortical neurons. Paired recording indicated that LRRK2 silencing affects evoked postsynaptic currents. Furthermore, LRRK2 silencing induces at the presynaptic site a redistribution of vesicles within the bouton, altered recycling dynamics, and increased vesicle kinetics. Accordingly, LRRK2 protein is present in the synaptosomal compartment of cortical neurons in which it interacts with several proteins involved in vesicular recycling. Our results suggest that LRRK2 modulates synaptic vesicle trafficking and distribution in neurons and in consequence participates in regulating the dynamics between vesicle pools inside the presynaptic bouton.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.3730-10.2011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6633036PMC
February 2011

A powerful transgenic tool for fate mapping and functional analysis of newly generated neurons.

BMC Neurosci 2010 Dec 31;11:158. Epub 2010 Dec 31.

Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany.

Background: Lack of appropriate tools and techniques to study fate and functional integration of newly generated neurons has so far hindered understanding of neurogenesis' relevance under physiological and pathological conditions. Current analyses are either dependent on mitotic labeling, for example BrdU-incorporation or retroviral infection, or on the detection of transient immature neuronal markers. Here, we report a transgenic mouse model (DCX-CreERT2) for time-resolved fate analysis of newly generated neurons. This model is based on the expression of a tamoxifen-inducible Cre recombinase under the control of a doublecortin (DCX) promoter, which is specific for immature neuronal cells in the CNS.

Results: In the DCX-CreERT2 transgenic mice, expression of CreERT2 was restricted to DCX+ cells. In the CNS of transgenic embryos and adult DCX-CreERT2 mice, tamoxifen administration caused the transient translocation of CreERT2 to the nucleus, allowing for the recombination of loxP-flanked sequences. In our system, tamoxifen administration at E14.5 resulted in reporter gene activation throughout the developing CNS of transgenic embryos. In the adult CNS, neurogenic regions were the primary sites of tamoxifen-induced reporter gene activation. In addition, reporter expression could also be detected outside of neurogenic regions in cells physiologically expressing DCX (e.g. piriform cortex, corpus callosum, hypothalamus). Four weeks after recombination, the vast majority of reporter-expressing cells were found to co-express NeuN, revealing the neuronal fate of DCX+ cells upon maturation.

Conclusions: This first validation demonstrates that our new DCX-CreERT2 transgenic mouse model constitutes a powerful tool to investigate neurogenesis, migration and their long-term fate of neuronal precursors. Moreover, it allows for a targeted activation or deletion of specific genes in neuronal precursors and will thereby contribute to unravel the molecular mechanisms controlling neurogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2202-11-158DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3019205PMC
December 2010

Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function.

EMBO Mol Med 2009 May;1(2):99-111

Center for Human Genetics, K.U. Leuven, Leuven, Belgium.

Mutations of the mitochondrial PTEN (phosphatase and tensin homologue)-induced kinase1 (PINK1) are important causes of recessive Parkinson disease (PD). Studies on loss of function and overexpression implicate PINK1 in apoptosis, abnormal mitochondrial morphology, impaired dopamine release and motor deficits. However, the fundamental mechanism underlying these various phenotypes remains to be clarified. Using fruit fly and mouse models we show that PINK1 deficiency or clinical mutations impact on the function of Complex I of the mitochondrial respiratory chain, resulting in mitochondrial depolarization and increased sensitivity to apoptotic stress in mammalian cells and tissues. In Drosophila neurons, PINK1 deficiency affects synaptic function, as the reserve pool of synaptic vesicles is not mobilized during rapid stimulation. The fundamental importance of PINK1 for energy maintenance under increased demand is further corroborated as this deficit can be rescued by adding ATP to the synapse. The clinical relevance of our observations is demonstrated by the fact that human wild type PINK1, but not PINK1 containing clinical mutations, can rescue Complex 1 deficiency. Our work suggests that Complex I deficiency underlies, at least partially, the pathogenesis of this hereditary form of PD. As Complex I dysfunction is also implicated in sporadic PD, a convergence of genetic and environmental causes of PD on a similar mitochondrial molecular mechanism appears to emerge.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/emmm.200900006DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378121PMC
May 2009

Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation.

J Biol Chem 2009 Aug 22;284(34):22938-51. Epub 2009 Jun 22.

Neurobiochemistry, Deutsches Zentrum für Neurodegenerative Erkrankungen and Adolf Butenandt Institute, Ludwig Maximilians University, 80336 Munich, Germany.

Loss-of-function mutations in the parkin gene (PARK2) and PINK1 gene (PARK6) are associated with autosomal recessive parkinsonism. PINK1 deficiency was recently linked to mitochondrial pathology in human cells and Drosophila melanogaster, which can be rescued by parkin, suggesting that both genes play a role in maintaining mitochondrial integrity. Here we demonstrate that an acute down-regulation of parkin in human SH-SY5Y cells severely affects mitochondrial morphology and function, a phenotype comparable with that induced by PINK1 deficiency. Alterations in both mitochondrial morphology and ATP production caused by either parkin or PINK1 loss of function could be rescued by the mitochondrial fusion proteins Mfn2 and OPA1 or by a dominant negative mutant of the fission protein Drp1. Both parkin and PINK1 were able to suppress mitochondrial fragmentation induced by Drp1. Moreover, in Drp1-deficient cells the parkin/PINK1 knockdown phenotype did not occur, indicating that mitochondrial alterations observed in parkin- or PINK1-deficient cells are associated with an increase in mitochondrial fission. Notably, mitochondrial fragmentation is an early phenomenon upon PINK1/parkin silencing that also occurs in primary mouse neurons and Drosophila S2 cells. We propose that the discrepant findings in adult flies can be explained by the time of phenotype analysis and suggest that in mammals different strategies may have evolved to cope with dysfunctional mitochondria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M109.035774DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755701PMC
August 2009

Regulation of astrocyte inflammatory responses by the Parkinson's disease-associated gene DJ-1.

FASEB J 2009 Aug 10;23(8):2478-89. Epub 2009 Mar 10.

Laboratory of Functional Neurogenetics, Dept. of Neurodegeneration, Hertie Institute for Clinical Brain Research, University Clinics Tübingen, Otfried Müller Str. 27, 72076 Tübingen, Germany.

The Parkinson's disease (PD)-associated gene DJ-1 mediates direct neuroprotection. The up-regulation of DJ-1 in reactive astrocytes also suggests a role in glia. Here we show that DJ-1 regulates proinflammatory responses in mouse astrocyte-rich primary cultures. When treated with a Toll-like receptor 4 agonist, the bacterial endotoxin lipopolysaccharide (LPS), Dj-1-knockout astrocytes generated >10 times more nitric oxide (NO) than littermate controls. Lentiviral reintroduction of DJ-1 restored the NO response to LPS. The enhanced NO production in Dj-1(-/-) astrocytes was mediated by a signaling pathway involving reactive oxygen species leading to specific hyperinduction of type II NO synthase [inducible NO synthase (iNOS)]. These effects coincided with significantly increased phosphorylation of p38 mitogen-activated protein kinase (MAPK), and p38(MAPK) inhibition suppressed NO production and iNOS mRNA and protein induction. Dj-1(-/-) astrocytes also induced the proinflammatory mediators cyclooxygenase-2 and interleukin-6 significantly more strongly, but not nerve growth factor. Finally, primary neuron cultures grown on Dj-1(-/-) astrocytes became apoptotic in response to LPS in an iNOS-dependent manner, directly demonstrating the neurotoxic potential of astrocytic DJ-1 deficiency. These findings identify DJ-1 as a regulator of proinflammatory responses and suggest that loss of DJ-1 contributes to PD pathogenesis by deregulation of astrocytic neuroinflammatory damage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.08-125153DOI Listing
August 2009

Cellular repair strategies in Parkinson's disease.

Ther Adv Neurol Disord 2009 Jan;2(1):51-60

Department of Neurology, University of Regensburg, Regensburg, Germany; and Salk Institute of Biological Studies, La Jolla, CA, USA.

Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, affecting 0.7% of the elderly population (defined as over 65 years of age). PD is clinically characterized by resting tremor, muscular rigidity, hypokinesia and postural instability. These motor symptoms result largely from the deficiency or dysfunction of dopaminergic neurons in the substantia nigra. Histopathological analysis reveals depletion of dopaminergic neurons as well as eosinophilic intracytoplasmic inclusions (Lewy bodies) in surviving neurons of the substantia nigra and other brain regions. The molecular pathogenesis is linked to protein misfolding by compromised alpha-synuclein and/or related proteins (synucleinopathy). Therefore, successful therapy of motor symptoms aims for the restoration of dopaminergic neurotransmission. Pharmacological drug treatment is usually effective only at an early stage of the disease but cannot halt progressive neuronal degeneration. With recent developments in stem cell technology, cell repair or replacement approaches came into focus. Here, we review new therapeutic strategies resulting from the innate propensity of the adult brain to generate new neurons, either by pharmacological stimulation of endogenous adult stem cell population or exogenous cell transplantation modalities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/1756285608100324DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002617PMC
January 2009

Novel allele of crybb2 in the mouse and its expression in the brain.

Invest Ophthalmol Vis Sci 2008 Apr;49(4):1533-41

Institutes of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.

Purpose: O377 was identified as a new dominant cataract mutation in mice after radiation experiments. The purpose of this study was to genetically characterize the mutation and to analyze its biological consequences.

Methods: Linkage analysis of the O377 mouse mutant was performed; candidate genes including Crybb2 were sequenced. The authors analyzed eyes and brains of the mutants by histology and the expression domains of Crybb2 by in situ hybridization and immunohistochemistry. RNA was isolated from whole brains of heterozygous and homozygous O377 mutants, and differential expression arrays were performed. All studies were compared with age- and strain-matched wild-type mice.

Results: The mutation was mapped to chromosome 5 and characterized as an A-->T substitution at the end of intron 5 of the Crybb2 gene. It led to alternative splicing with a 57-bp insertion in the mRNA and to 19 additional amino acids in the protein. In the brain, betaB2-crystallin was expressed in the cerebellum, olfactory bulb, cerebral cortex, and hippocampus. The only morphologic difference in the brain is the increased number of Purkinje cells in the cerebellum of homozygous strain-matched mutants. Differential expression analysis revealed the upregulation of calpain-3 in the brain of homozygous mutants, which was confirmed by quantitative real-time PCR.

Conclusions: These results confirm the third allele of Crybb2 in the mouse that also affected exon 6 and the fourth Greek key motif. Moreover, expression analysis of Crybb2 identified for the first time distinct regions of expression in the brain, and the differential expression analysis points to the participation of Ca2+ in the corresponding pathologic processes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.07-0788DOI Listing
April 2008

Fibroblast growth factor receptors cooperate to regulate neural progenitor properties in the developing midbrain and hindbrain.

J Neurosci 2007 Aug;27(32):8581-92

Institute of Biotechnology, Viikki Biocenter, University of Helsinki, 00014 Helsinki, Finland.

Fibroblast growth factors (FGFs) secreted from the midbrain-rhombomere 1 (r1) boundary instruct cell behavior in the surrounding neuroectoderm. For example, a combination of FGF and sonic hedgehog (SHH) can induce the development of the midbrain dopaminergic neurons, but the mechanisms behind the action and integration of these signals are unclear. We studied how FGF receptors (FGFRs) regulate cellular responses by analyzing midbrain-r1 development in mouse embryos, which carry different combinations of mutant Fgfr1, Fgfr2, and Fgfr3 alleles. Our results show that the FGFRs act redundantly to support cell survival in the dorsal neuroectoderm, promote r1 tissue identity, and regulate the production of ventral neuronal populations, including midbrain dopaminergic neurons. The compound Fgfr mutants have apparently normal WNT/SHH signaling and neurogenic gene expression in the ventral midbrain, but the number of proliferative neural progenitors is reduced as a result of precocious neuronal differentiation. Our results suggest a SoxB1 family member, Sox3, as a potential FGF-induced transcription factor promoting progenitor renewal. We propose a model for regulation of progenitor cell self-renewal and neuronal differentiation by combinatorial intercellular signals in the ventral midbrain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.0192-07.2007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6672929PMC
August 2007

Structural determinants of the C-terminal helix-kink-helix motif essential for protein stability and survival promoting activity of DJ-1.

J Biol Chem 2007 May 1;282(18):13680-91. Epub 2007 Mar 1.

Laboratory of Alzheimer's and Parkinson's Disease Research, Department of Biochemistry, Ludwig Maximilians University of Munich, 80336 Munich, Germany.

Mutations in the PARK7 gene encoding DJ-1 cause autosomal recessive Parkinson disease. The most deleterious point mutation is the L166P substitution, which resides in a structure motif comprising two alpha-helices (G and H) separated by a kink. Here we subjected the C-terminal helix-kink-helix motif to systematic site-directed mutagenesis, introducing helix-incompatible proline residues as well as conservative substitutions into the helical interface. Furthermore, we generated deletion mutants lacking the H-helix, the kink, and the entire C terminus. When transfected into neural and nonneural cell lines, steady-state levels of G-helix breaking and kink deletion mutants were dramatically lower than wild-type DJ-1. The effects of H-helix breakers were comparably smaller, and the non-helix breaking mutants only slightly destabilized DJ-1. The decreased steady-state levels were due to accelerated protein degradation involving in part the proteasome. G-helix breaking DJ-1 mutations abolished dimer formation. These structural perturbations had functional consequences on the cytoprotective activities of DJ-1. The destabilizing mutations conferred reduced cytoprotection against H(2)O(2) in transiently retransfected DJ-1 knock-out mouse embryonic fibroblasts. The loss of survival promoting activity of the DJ-1 mutants with destabilizing C-terminal mutations correlated with impaired anti-apoptotic signaling. We found that wild-type, but not mutant DJ-1 facilitated the Akt pathway and simultaneously blocked the apoptosis signal-regulating kinase 1, with which DJ-1 interacted in a redox-dependent manner. Thus, the G-helix and kink are critical determinants of the C-terminal helix-kink-helix motif, which is absolutely required for stability and the regulation of survival-promoting redox signaling of the Parkinson disease-associated protein DJ-1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M609821200DOI Listing
May 2007

Fgfr2 and Fgfr3 are not required for patterning and maintenance of the midbrain and anterior hindbrain.

Dev Biol 2007 Mar 10;303(1):231-43. Epub 2006 Nov 10.

GSF-National Research Center for Environment and Health, Institute of Developmental Genetics, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany.

The mid-/hindbrain organizer (MHO) is characterized by the expression of a network of genes, which controls the patterning and development of the prospective midbrain and anterior hindbrain. One key molecule acting at the MHO is the fibroblast growth factor (Fgf) 8. Ectopic expression of Fgf8 induces genes that are normally expressed at the mid-/hindbrain boundary followed by the induction of midbrain and anterior hindbrain structures. Inactivation of the Fgf receptor (Fgfr) 1 gene, which was thought to be the primary transducer of the Fgf8 signal at the MHO, in the mid-/hindbrain region, leads to a deletion of dorsal structures of the mid-/hindbrain region, whereas ventral tissues are less severely affected. This suggests that other Fgfrs might be responsible for ventral mid-/hindbrain region development. Here we report the analysis of Fgfr2 conditional knockout mice, lacking the Fgfr2 in the mid-/hindbrain region and of Fgfr3 knockout mice with respect to the mid-/hindbrain region. In both homozygous mouse mutants, patterning of the mid-/hindbrain region is not altered, neuronal populations develop normal and are maintained into adulthood. This analysis shows that the Fgfr2 and the Fgfr3 on their own are dispensable for the development of the mid-/hindbrain region. We suggest functional redundancy of Fgf receptors in the mid-/hindbrain region.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2006.11.008DOI Listing
March 2007

Differential mRNA distribution of components of the ERK/MAPK signalling cascade in the adult mouse brain.

J Comp Neurol 2007 Jan;500(3):542-56

GSF National Research Center for Environment and Health, Institute of Developmental Genetics, 85764 Neuherberg, Germany.

The mitogen-activated protein kinases (MAPKs), also called extracellular signal-regulated kinases (ERKs), are a group of serine/threonine terminal protein kinases activated downstream of a pleiotrophy of transmembrane receptors. Main intracellular components of the MAPK signalling pathway are the RAF, MEK, and ERK proteins, which work in a cascade of activator and effector proteins. They regulate many fundamental cellular functions, including cell proliferation, cell survival, and cell differentiation by transducing extracellular signals to cytoplasmic and nuclear effectors. To reveal more details about possible activation cascades in this pathway, the present study gives a complete description of the differential expression of Braf, Mek1, Mek2, Mek5, Erk1, Erk2, Erk3, and Erk5 in the adult murine brain by way of in situ hybridization analysis. In this study, we found that each gene is widely expressed in the whole brain, except for Mek2, but each displays a very distinct expression pattern, leading to distinct interactions of the MAPK components within different regions. Most notably we found that 1) Braf and Erk3 are coexpressed in the hippocampus proper, confirming a possible functional interaction; 2) in most forebrain areas, Mek5 and Erk5 are coexpressed; and 3) in the neurogenic regions of the brain, namely, the olfactory bulb and the dentate gyrus, Braf is absent, indicating that other activator proteins have to take over its function. Despite these differences, our results show widespread coexpression of the pathway components, thereby confirming the hypothesis of redundant functions among several MEK and ERK proteins in some regions of the brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.21186DOI Listing
January 2007

Megane/Heslike is required for normal GABAergic differentiation in the mouse superior colliculus.

Development 2006 Oct;133(19):3847-57

GSF-National Research Center for Environment and Health, Institute of Developmental Genetics, 35/8006, Ingolstädter Landstrasse, 1, Neuherberg, Germany.

The mouse Mgn protein (Helt) is structurally related to the neurogenic Drosophila hairy and Enhancer of split [h/E(spl)] proteins, but its unique structural properties distinguish it from other members of the family. Mgn expression shows a spatiotemporal correlation with GABAergic markers in several brain regions. We report here that homozygous Mgn-null mice die between the second and the fifth postnatal week of age, and show a complete depletion of Gad65 and Gad67 expression in the superior colliculus and a reduction in the inferior colliculus. Other brain regions, as well as other neural systems, are not affected. The progenitor GABAergic cells appear to be generated in right numbers but fail to become GABAergic neurons. The phenotype of the mice is consistent with reduced GABAergic activity. Thus, our in vivo study provides evidence that Mgn is the key regulator of GABAergic neurons, controlling their specification in the dorsal midbrain. Another conclusion from our results is that the function of Mgn shows a previously unrecognized role for h/E(spl)-related transcription factors in the dorsal midbrain GABAergic cell differentiation. Vertebrate h/E(spl)-related genes can no longer be regarded solely as a factors that confer generic neurogenic properties, but as key components for the subtype-neuronal identity in the mammalian CNS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.02557DOI Listing
October 2006