Publications by authors named "Dani Beck"

9 Publications

  • Page 1 of 1

Linking objective measures of physical activity and capability with brain structure in healthy community dwelling older adults.

Neuroimage Clin 2021 24;31:102767. Epub 2021 Jul 24.

NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.

Maintaining high levels of daily activity and physical capability have been proposed as important constituents to promote healthy brain and cognitive aging. Studies investigating the associations between brain health and physical activity in late life have, however, mainly been based on self-reported data or measures designed for clinical populations. In the current study, we examined cross-sectional associations between physical activity, recorded by an ankle-positioned accelerometer for seven days, physical capability (grip strength, postural control, and walking speed), and neuroimaging based surrogate markers of brain health in 122 healthy older adults aged 65-88 years. We used a multimodal brain imaging approach offering complementary structural MRI based indicators of brain health: global white matter fractional anisotropy (FA) and mean diffusivity (MD) based on diffusion tensor imaging, and subcortical and global brain age based on brain morphology inferred from T1-weighted MRI data. In addition, based on the results from the main analysis, follow-up regression analysis was performed to test for association between the volume of key subcortical regions of interest (hippocampus, caudate, thalamus and cerebellum) and daily steps, and a follow-up voxelwise analysis to test for associations between walking speed and FA across the white matter Tract-Based Spatial Statistics (TBSS) skeleton. The analyses revealed a significant association between global FA and walking speed, indicating higher white matter integrity in people with higher pace. Voxelwise analysis supported widespread significant associations. We also found a significant interaction between sex and subcortical brain age on number of daily steps, indicating younger-appearing brains in more physically active women, with no significant associations among men. These results provide insight into the intricate associations between different measures of brain and physical health in old age, and corroborate established public health advice promoting physical activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nicl.2021.102767DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329542PMC
September 2021

A history of previous childbirths is linked to women's white matter brain age in midlife and older age.

Hum Brain Mapp 2021 Sep 12;42(13):4372-4386. Epub 2021 Jun 12.

NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.

Maternal brain adaptations occur in response to pregnancy, but little is known about how parity impacts white matter and white matter ageing trajectories later in life. Utilising global and regional brain age prediction based on multi-shell diffusion-weighted imaging data, we investigated the association between previous childbirths and white matter brain age in 8,895 women in the UK Biobank cohort (age range = 54-81 years). The results showed that number of previous childbirths was negatively associated with white matter brain age, potentially indicating a protective effect of parity on white matter later in life. Both global white matter and grey matter brain age estimates showed unique contributions to the association with previous childbirths, suggesting partly independent processes. Corpus callosum contributed uniquely to the global white matter association with previous childbirths, and showed a stronger relationship relative to several other tracts. While our findings demonstrate a link between reproductive history and brain white matter characteristics later in life, longitudinal studies are required to establish causality and determine how parity may influence women's white matter trajectories across the lifespan.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hbm.25553DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8356991PMC
September 2021

Evidence for Reduced Long-Term Potentiation-Like Visual Cortical Plasticity in Schizophrenia and Bipolar Disorder.

Schizophr Bull 2021 May 8. Epub 2021 May 8.

NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.

Several lines of research suggest that impairments in long-term potentiation (LTP)-like synaptic plasticity might be a key pathophysiological mechanism in schizophrenia (SZ) and bipolar disorder type I (BDI) and II (BDII). Using modulations of visually evoked potentials (VEP) of the electroencephalogram, impaired LTP-like visual cortical plasticity has been implicated in patients with BDII, while there has been conflicting evidence in SZ, a lack of research in BDI, and mixed results regarding associations with symptom severity, mood states, and medication. We measured the VEP of patients with SZ spectrum disorders (n = 31), BDI (n = 34), BDII (n = 33), and other BD spectrum disorders (n = 2), and age-matched healthy control (HC) participants (n = 200) before and after prolonged visual stimulation. Compared to HCs, modulation of VEP component N1b, but not C1 or P1, was impaired both in patients within the SZ spectrum (χ 2 = 35.1, P = 3.1 × 10-9) and BD spectrum (χ 2 = 7.0, P = 8.2 × 10-3), including BDI (χ 2 = 6.4, P = .012), but not BDII (χ 2 = 2.2, P = .14). N1b modulation was also more severely impaired in SZ spectrum than BD spectrum patients (χ 2 = 14.2, P = 1.7 × 10-4). N1b modulation was not significantly associated with Positive and Negative Syndrome Scale (PANSS) negative or positive symptoms scores, number of psychotic episodes, Montgomery and Åsberg Depression Rating Scale (MADRS) scores, or Young Mania Rating Scale (YMRS) scores after multiple comparison correction, although a nominal association was observed between N1b modulation and PANSS negative symptoms scores among SZ spectrum patients. These results suggest that LTP-like plasticity is impaired in SZ and BD. Adding to previous genetic, pharmacological, and electrophysiological evidence, these results implicate aberrant synaptic plasticity as a mechanism underlying SZ and BD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/schbul/sbab049DOI Listing
May 2021

White matter microstructure across the adult lifespan: A mixed longitudinal and cross-sectional study using advanced diffusion models and brain-age prediction.

Neuroimage 2021 01 9;224:117441. Epub 2020 Oct 9.

Department of Psychology, University of Oslo, PO Box 1094 Blindern, 0317 Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway. Electronic address:

The macro- and microstructural architecture of human brain white matter undergoes substantial alterations throughout development and ageing. Most of our understanding of the spatial and temporal characteristics of these lifespan adaptations come from magnetic resonance imaging (MRI), including diffusion MRI (dMRI), which enables visualisation and quantification of brain white matter with unprecedented sensitivity and detail. However, with some notable exceptions, previous studies have relied on cross-sectional designs, limited age ranges, and diffusion tensor imaging (DTI) based on conventional single-shell dMRI. In this mixed cross-sectional and longitudinal study (mean interval: 15.2 months) including 702 multi-shell dMRI datasets, we combined complementary dMRI models to investigate age trajectories in healthy individuals aged 18 to 94 years (57.12% women). Using linear mixed effect models and machine learning based brain age prediction, we assessed the age-dependence of diffusion metrics, and compared the age prediction accuracy of six different diffusion models, including diffusion tensor (DTI) and kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), restriction spectrum imaging (RSI), spherical mean technique multi-compartment (SMT-mc), and white matter tract integrity (WMTI). The results showed that the age slopes for conventional DTI metrics (fractional anisotropy [FA], mean diffusivity [MD], axial diffusivity [AD], radial diffusivity [RD]) were largely consistent with previous research, and that the highest performing advanced dMRI models showed comparable age prediction accuracy to conventional DTI. Linear mixed effects models and Wilk's theorem analysis showed that the 'FA fine' metric of the RSI model and 'orientation dispersion' (OD) metric of the NODDI model showed the highest sensitivity to age. The results indicate that advanced diffusion models (DKI, NODDI, RSI, SMT mc, WMTI) provide sensitive measures of age-related microstructural changes of white matter in the brain that complement and extend the contribution of conventional DTI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2020.117441DOI Listing
January 2021

Brain Age Prediction Reveals Aberrant Brain White Matter in Schizophrenia and Bipolar Disorder: A Multisample Diffusion Tensor Imaging Study.

Biol Psychiatry Cogn Neurosci Neuroimaging 2020 12 8;5(12):1095-1103. Epub 2020 Jul 8.

Catosenteret Rehabilitation Center, Son, Norway.

Background: Schizophrenia (SZ) and bipolar disorder (BD) share substantial neurodevelopmental components affecting brain maturation and architecture. This necessitates a dynamic lifespan perspective in which brain aberrations are inferred from deviations from expected lifespan trajectories. We applied machine learning to diffusion tensor imaging (DTI) indices of white matter structure and organization to estimate and compare brain age between patients with SZ, patients with BD, and healthy control (HC) subjects across 10 cohorts.

Methods: We trained 6 cross-validated models using different combinations of DTI data from 927 HC subjects (18-94 years of age) and applied the models to the test sets including 648 patients with SZ (18-66 years of age), 185 patients with BD (18-64 years of age), and 990 HC subjects (17-68 years of age), estimating the brain age for each participant. Group differences were assessed using linear models, accounting for age, sex, and scanner. A meta-analytic framework was applied to assess the heterogeneity and generalizability of the results.

Results: Tenfold cross-validation revealed high accuracy for all models. Compared with HC subjects, the model including all feature sets significantly overestimated the age of patients with SZ (Cohen's d = -0.29) and patients with BD (Cohen's d = 0.18), with similar effects for the other models. The meta-analysis converged on the same findings. Fractional anisotropy-based models showed larger group differences than the models based on other DTI-derived metrics.

Conclusions: Brain age prediction based on DTI provides informative and robust proxies for brain white matter integrity. Our results further suggest that white matter aberrations in SZ and BD primarily consist of anatomically distributed deviations from expected lifespan trajectories that generalize across cohorts and scanners.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpsc.2020.06.014DOI Listing
December 2020

Experience-dependent modulation of the visual evoked potential: Testing effect sizes, retention over time, and associations with age in 415 healthy individuals.

Neuroimage 2020 12 20;223:117302. Epub 2020 Aug 20.

NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway. Electronic address:

Experience-dependent modulation of the visual evoked potential (VEP) is a promising proxy measure of synaptic plasticity in the cerebral cortex. However, existing studies are limited by small to moderate sample sizes as well as by considerable variability in how VEP modulation is quantified. In the present study, we used a large sample (n = 415) of healthy volunteers to compare different quantifications of VEP modulation with regards to effect sizes and retention of the modulation effect over time. We observed significant modulation for VEP components C1 (Cohen's d = 0.53), P1 (d = 0.66), N1 (d=-0.27), N1b (d=-0.66), but not P2 (d = 0.08), and in three clusters of total power modulation, 2-4 min after 2 Hz prolonged visual stimulation. For components N1 (d=-0.21) and N1b (d=-0.38), as well for the total power clusters, this effect was retained after 54-56 min, by which time also the P2 component had gained modulation (d = 0.54). Moderate to high correlations (0.39≤ρ≤0.69) between modulation at different postintervention blocks revealed a relatively high temporal stability in the modulation effect for each VEP component. However, different VEP components also showed markedly different temporal retention patterns. Finally, participant age correlated negatively with C1 (χ=30.4), and positively with P1 modulation (χ=13.4), whereas P2 modulation was larger for female participants (χ=15.4). There were no effects of either age or sex on N1 and N1b potentiation. These results provide strong support for VEP modulation, and especially N1b modulation, as a robust measure of synaptic plasticity, but underscore the need to differentiate between components, and to control for demographic confounders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2020.117302DOI Listing
December 2020

Multimodal fusion of structural and functional brain imaging in depression using linked independent component analysis.

Hum Brain Mapp 2020 01 1;41(1):241-255. Epub 2019 Oct 1.

NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.

Previous structural and functional neuroimaging studies have implicated distributed brain regions and networks in depression. However, there are no robust imaging biomarkers that are specific to depression, which may be due to clinical heterogeneity and neurobiological complexity. A dimensional approach and fusion of imaging modalities may yield a more coherent view of the neuronal correlates of depression. We used linked independent component analysis to fuse cortical macrostructure (thickness, area, gray matter density), white matter diffusion properties and resting-state functional magnetic resonance imaging default mode network amplitude in patients with a history of depression (n = 170) and controls (n = 71). We used univariate and machine learning approaches to assess the relationship between age, sex, case-control status, and symptom loads for depression and anxiety with the resulting brain components. Univariate analyses revealed strong associations between age and sex with mainly global but also regional specific brain components, with varying degrees of multimodal involvement. In contrast, there were no significant associations with case-control status, nor symptom loads for depression and anxiety with the brain components, nor any interaction effects with age and sex. Machine learning revealed low model performance for classifying patients from controls and predicting symptom loads for depression and anxiety, but high age prediction accuracy. Multimodal fusion of brain imaging data alone may not be sufficient for dissecting the clinical and neurobiological heterogeneity of depression. Precise clinical stratification and methods for brain phenotyping at the individual level based on large training samples may be needed to parse the neuroanatomy of depression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hbm.24802DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267936PMC
January 2020

Continuity and Discontinuity in Human Cortical Development and Change From Embryonic Stages to Old Age.

Cereb Cortex 2019 08;29(9):3879-3890

Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway.

The human cerebral cortex is highly regionalized, and this feature emerges from morphometric gradients in the cerebral vesicles during embryonic development. We tested if this principle of regionalization could be traced from the embryonic development to the human life span. Data-driven fuzzy clustering was used to identify regions of coordinated longitudinal development of cortical surface area (SA) and thickness (CT) (n = 301, 4-12 years). The principal divide for the developmental SA clusters extended from the inferior-posterior to the superior-anterior cortex, corresponding to the major embryonic morphometric anterior-posterior (AP) gradient. Embryonic factors showing a clear AP gradient were identified, and we found significant differences in gene expression of these factors between the anterior and posterior clusters. Further, each identified developmental SA and CT clusters showed distinguishable life span trajectories in a larger longitudinal dataset (4-88 years, 1633 observations), and the SA and CT clusters showed differential relationships to cognitive functions. This means that regions that developed together in childhood also changed together throughout life, demonstrating continuity in regionalization of cortical changes. The AP divide in SA development also characterized genetic patterning obtained in an adult twin sample. In conclusion, the development of cortical regionalization is a continuous process from the embryonic stage throughout life.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhy266DOI Listing
August 2019

Comparison between primary peritoneal and epithelial ovarian carcinoma: a population-based study.

Am J Obstet Gynecol 2004 Apr;190(4):1039-45

Gynecologic Oncology Unit, Department of Obstetrics and Gynecology, E. Wolfson Medical Center, Holon, Israel.

Objective: This study was undertaken to characterize primary peritoneal carcinoma (PPC) compared with ovarian carcinoma (OvC).

Study Design: Within the framework of a nationwide epidemiologic Israeli study, 95 PPC patients were identified and compared with 117 FIGO stage III-IV epithelial OvC patients matched by age and continent of birth. Data were abstracted from medical records and personal interviews.

Results: Our data confirm the similarities between PPC and OvC. A higher rate of abdominal distention, volume of ascites, and malignant cells in ascitic fluid and lower rate of pelvic palpable mass and personal breast cancer history were found in the PPC compared with the OvC group. The overall survival was similar in both groups (30-33 months). In optimally cytoreduced patients, survival was better in the OvC group. Diameter of residual disease was associated with better survival only in the OvC group.

Conclusion: The clinical differences do not enable a preoperative distinction between the neoplasms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajog.2003.09.073DOI Listing
April 2004
-->