Publications by authors named "Dan-Miao Sun"

3 Publications

  • Page 1 of 1

Impaired decision-making and functional neuronal network activity in systemic lupus erythematosus.

J Magn Reson Imaging 2018 12 14;48(6):1508-1517. Epub 2018 Mar 14.

First Affiliated Hospital of Shantou University Medical College, Shantou, China.

Background: Systemic lupus erythematosus (SLE) is associated with cognitive deficit but the exact neural mechanisms remain unclear.

Purpose: To explore sequential brain activities using functional magnetic resonance imaging (fMRI) during the performance of a decision-making task, and to determine whether serum or clinical markers can reflect the involvement of the brain in SLE.

Subjects: Sixteen female SLE patients without overt clinical neuropsychiatric symptoms and 16 healthy controls were included.

Field Strength/sequence: 1.5T, T -weighted anatomic images, gradient-echo echo-planar imaging sequence, and 3D images.

Assessment: The computer-based Iowa Gambling Task (IGT) for assessing decision-making was performed by SLE patients and 16 matched controls; brain activity was recorded via blood oxygen level-dependent (BOLD) fMRI. The amplitudes of the average BOLD responses were calculated for each individual subject, and activation data from fMRI experiments were compared between the two groups.

Statistical Tests: Two-sample t-test; repeated-measures analysis of variance (ANOVA); linear regression analyses.

Results: Imaging revealed activity in a distributed network of brain regions in both groups, including the ventromedial prefrontal cortex (vmPFC), the orbitofrontal cortex (OFC), the dorsolateral prefrontal cortex (dlPFC), the anterior cingulate cortex (ACC), the posterior cingulate cortex (PCC), and the striatum, as well as the insular, parietal, and occipital cortices. Compared to controls, SLE patients showed lower activation in a convergence zone and the limbic system, namely, the OFC, vmPFC, ACC, and PCC, but greater activation in memory, emotion, and behavior systems involving the dlPFC, the insular cortex and the striatum. Furthermore, brain activation in the vmPFC was positively correlated with IGT scores (r = 0.63, P < 0.001), but inversely related to disease activity (r = -0.57, P < 0.01).

Data Conclusion: The dynamics among the aforementioned neural systems (some hyperfunctioning, others hypofunctioning) may shed some light on the pathologic mechanisms underlying SLE without overt clinical neuropsychiatric symptoms. In addition, disease activity may potentially be used as an effective biomarker reflecting cerebral involvement in SLE.

Level Of Evidence: 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;48:1508-1517.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
December 2018

Decision-making in primary onset middle-age type 2 diabetes mellitus: a BOLD-fMRI study.

Sci Rep 2017 08 31;7(1):10246. Epub 2017 Aug 31.

The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, 515041, China.

Although type 2 diabetes mellitus (T2DM) is a well-recognized risk factor for dementia, the neural mechanisms that underlying cognitive impairment in T2DM remain unclear. We used functional magnetic resonance imaging (fMRI) during a computerized version of the Iowa Gambling Task to investigate the neural basis of decision making at the initial onset stage of T2DM. Eighteen newly diagnosed middle-aged T2DM patients, with no previous diabetic treatment history, and 18 matched controls were recruited. Results indicated that T2DM patients made more disadvantageous decisions than controls. Compared to healthy subjects, T2DM patients showed decreased activation in the ventral medial prefrontal cortex (VMPFC), orbitofrontal cortex (OFC) and anterior cingulate cortex, and increased activity in the dorsolateral prefrontal cortex, posterior cingulate cortex, insula and occipital lobes. IGT performance positively correlated with changes in brain activation in the VMPFC and OFC in both groups. Moreover, poor glycemic control was associated with decision-making function both in behavioral and brain activity in the VMPFC and OFC in patients. Conclusively, T2DM patients may suffer from weaknesses in their prefrontal cortex functions that lead to poorer decision-making under ambiguity, at least as assessed by the IGT.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
August 2017

Spatial Working Memory Impairment in Patients with Non-neuropsychiatric Systemic Lupus Erythematosus: A Blood-oxygen-level Dependent Functional Magnetic Resonance Imaging Study.

J Rheumatol 2017 02 15;44(2):201-208. Epub 2017 Jan 15.

From the Department of Radiology, First Affiliated Hospital, Medical College of Shantou University; Guangdong Key Laboratory of Medical Molecular Imaging, Shantou, Guangdong; Graduate School of Beijing Normal University, Zhuhai, China.

Objective: Using ethology and functional magnetic resonance imaging (fMRI) to explore mild cognitive dysfunction and spatial working memory (WM) impairment in patients with systemic lupus erythematosus (SLE) without overt neuropsychiatric symptoms (non-NPSLE) and to study whether any clinical biomarkers could serve as predictors of brain dysfunction in this disease.

Methods: Eighteen non-NPSLE patients and 18 matched subjects were all tested using the Montreal cognitive assessment scale test and scanned using blood-oxygen-level dependent fMRI while performing the n-back task to investigate the activation intensity of some cognition-related areas.

Results: Ethology results showed that non-NPSLE patients had mild cognitive dysfunction and memory dysfunction (p < 0.05). The fMRI scan confirmed a neural network consisting of bilateral dorsolateral prefrontal cortex (DLPFC), premotor area, parietal lobe, and supplementary motor area (SMA)/anterior cingulate cortex (ACC) that was activated during the n-back task, with right hemisphere dominance. However, only the right SMA/ACC showed a load effect in the non-NPSLE group; the activation intensity of most WM-related brain areas for the non-NPSLE group was lower than for the control group under 3 memory loads. Further, we found that the activation intensity of some cognition-related areas, including the bilateral caudate nucleus/insula and hippocampus/parahippocampal gyrus were lower than the control group under the memory loads. An inverse correlation existed between individual activation intensity and disease duration.

Conclusion: Non-NPSLE-related brain damage with right DLPFC-posterior parietal lobe and parahippocampal gyrus default network causes impairment of spatial WM and mild cognitive dysfunction. Patients with longer disease duration would be expected to exhibit increased central nervous system damage.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
February 2017