Publications by authors named "Damián Nicolás Jerez"

2 Publications

  • Page 1 of 1

Response to water deficit of semi-desert wild potato Solanum kurtzianum genotypes collected from different altitudes.

Plant Sci 2021 Jul 15;308:110911. Epub 2021 Apr 15.

Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina.

Drought-sensitive crops are threatened as a consequence of limited available water due to climate change. The cultivated potato (Solanum tuberosum) is susceptible to drought and within its wild relative species, Solanum kurtzianum is the Argentinian wild potato species best adapted to arid conditions. However, its physiological responses to water deficit (WD) are still missing. Within the distribution of S. kurtzianum, genotypes could be adapted to differential precipitation regimes. The aim of this work was to evaluate responses of three S. kurtzianum genotypes collected at 1100 (G1), 1900 (G2) and 2100 m a.s.l. (G3) to moderate and severe WD. Treatments were imposed since flowering and lasted 36 days. Yield components, morpho-physiological and biochemical responses; and phenotypic plasticity were evaluated. The three genotypes presented mechanisms to tolerate both WD treatments. G1 presented the lowest yield reduction under moderate WD, mainly through a rapid stomatal closure and a modest vegetative growth. The differences among genotypes suggest that local adaptation is taking place within its natural habitat. Also, G2 presented environmentally induced shifts in plasticity for stomatal length and carotenoids, suggesting that phenotypic plasticity has a role in acclimation of plants to WD until selection works.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2021.110911DOI Listing
July 2021

Grapevine morphological shade acclimation is mediated by light quality whereas hydraulic shade acclimation is mediated by light intensity.

Plant Sci 2021 Jun 24;307:110893. Epub 2021 Mar 24.

IADIZA (Instituto Argentino de Investigaciones en Zonas Áridas), CONICET, UNCuyo. Av. Ruiz Leal s/n, Parque General San Martín, 5500, Mendoza, Argentina.

Plants acclimate to shade by sensing light signals such as low photosynthetic active radiation (PAR), low blue light (BL) levels and low red-to-far red ratios (R:FR) trough plant photoreceptors cross talk. We previously demonstrated that grapevine is irresponsive to variations in R:FR and that BL-attenuation mediates morphological and architectural responses to shade increasing light interception and absorption efficiencies. However, we wondered if grapevine respond to low R:FR when BL is attenuated at the same time. Our objective was to evaluate if morphological, architectural and hydraulic acclimation to shade is mediated by low R:FR ratios and BL attenuation. To test this, we carried out experiments under natural radiation, manipulating light quality by selective sunlight exclusion and light supplementation. We grew grapevines under low PAR (LP) and four high PAR (HP) treatments: HP, HP plus FR supplementation (HP + FR), HP with BL attenuation (HP-B) and HP with BL attenuation plus FR supplementation (HP-B + FR). We found that plants grown under HP-B and HP-B + FR had similar morphological (stem and petiole length, leaf thickness and area), architectural (laminae' angles) and anatomical (stomatal density) traits than plants grown under LP. However, only LP plants presented lower stomata differentiation, lower δC and hence lower water use efficiency. Therefore, even under a BL and R:FR attenuated environment, morphological and architectural responses were modulated by BL but not by variation in R:FR. Meanwhile water relations were affected by PAR intensity but not by changes in light quality. Knowing grapevine responses to light quantity and quality are indispensable to adopt tools or design new cultural management practices that manipulate irradiance in the field intending to improve crop performance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2021.110893DOI Listing
June 2021
-->