Publications by authors named "Dabo Yang"

3 Publications

  • Page 1 of 1

Regulation of Hspb7 by MEF2 and AP-1: implications for Hspb7 in muscle atrophy.

J Cell Sci 2016 11 15;129(21):4076-4090. Epub 2016 Sep 15.

Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3

Mycocyte enhancer factor 2 (MEF2) and activator protein 1 (AP-1) transcription complexes have been individually implicated in myogenesis, but their genetic interaction has not previously been addressed. Using MEF2A, c-Jun and Fra-1 chromatin immunoprecipitation sequencing (ChIP-seq) data and predicted AP-1 consensus motifs, we identified putative common MEF2 and AP-1 target genes, several of which are implicated in regulating the actin cytoskeleton. Because muscle atrophy results in remodelling or degradation of the actin cytoskeleton, we characterized the expression of putative MEF2 and AP-1 target genes (Dstn, Flnc, Hspb7, Lmod3 and Plekhh2) under atrophic conditions using dexamethasone (Dex) treatment in skeletal myoblasts. Heat shock protein b7 (Hspb7) was induced by Dex treatment and further analyses revealed that loss of MEF2A using siRNA prevented Dex-regulated induction of Hspb7. Conversely, ectopic Fra-2 or c-Jun expression reduced Dex-mediated upregulation of Hspb7 whereas AP-1 depletion enhanced Hspb7 expression. In vivo, expression of Hspb7 and other autophagy-related genes was upregulated in response to atrophic conditions in mice. Manipulation of Hspb7 levels in mice also impacted gross muscle mass. Collectively, these data indicate that MEF2 and AP-1 confer antagonistic regulation of Hspb7 gene expression in skeletal muscle, with implications for autophagy and muscle atrophy.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
November 2016

Genome-wide association between Six4, MyoD, and the histone demethylase Utx during myogenesis.

FASEB J 2015 Nov 30;29(11):4738-55. Epub 2015 Jul 30.

*Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada

Adult skeletal muscles can regenerate after injury, due to the presence of satellite cells, a quiescent population of myogenic progenitor cells. Once activated, satellite cells repair the muscle damage by undergoing myogenic differentiation. The myogenic regulatory factors (MRFs) coordinate the process of progenitor differentiation in cooperation with other families of transcription factors (TFs). The Six1 and Six4 homeodomain TFs are expressed in developing and adult muscle and Six1 is critical for embryonic and adult myogenesis. However, the lack of a muscle developmental phenotype in Six4-null mice, which has been attributed to compensation by other Six family members, has discouraged further assessment of the role of Six4 during adult muscle regeneration. By employing genome-wide approaches to address the function of Six4 during adult skeletal myogenesis, we have identified a core set of muscle genes coordinately regulated in adult muscle precursors by Six4 and the MRF MyoD. Throughout the genome of differentiating adult myoblasts, the cooperation between Six4 and MyoD is associated with chromatin repressive mark removal by Utx, a demethylase of histone H3 trimethylated at lysine 27. Among the genes coordinately regulated by Six4 and MyoD are several genes critical for proper in vivo muscle regeneration, implicating a role of Six4 in this process. Using in vivo RNA interference of Six4, we expose an uncompensated function of this TF during muscle regeneration. Together, our results reveal a role for Six4 during adult muscle regeneration and suggest a widespread mechanism of cooperation between Six4 and MyoD.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
November 2015

Six1 regulates MyoD expression in adult muscle progenitor cells.

PLoS One 2013 28;8(6):e67762. Epub 2013 Jun 28.

Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada.

Quiescent satellite cells are myogenic progenitors that enable regeneration of skeletal muscle. One of the early events of satellite cell activation following myotrauma is the induction of the myogenic regulatory factor MyoD, which eventually induces terminal differentiation and muscle function gene expression. The purpose of this study was to elucidate the mechanism by which MyoD is induced during activation of satellite cells in mouse muscle undergoing regeneration. We show that Six1, a transcription factor essential for embryonic myogenesis, also regulates MyoD expression in muscle progenitor cells. Six1 knock-down by RNA interference leads to decreased expression of MyoD in myoblasts. Chromatin immunoprecipitation assays reveal that Six1 binds the Core Enhancer Region of MyoD. Further, transcriptional reporter assays demonstrate that Core Enhancer Region reporter gene activity in myoblasts and in regenerating muscle depends on the expression of Six1 and on Six1 binding sites. Finally, we provide evidence indicating that Six1 is required for the proper chromatin structure at the Core Enhancer Region, as well as for MyoD binding at its own enhancer. Together, our results reveal that MyoD expression in satellite cells depends on Six1, supporting the idea that Six1 plays an important role in adult myogenesis, in addition to its role in embryonic muscle formation.
View Article and Find Full Text PDF

Download full-text PDF

April 2014