Publications by authors named "D L Sbardellati"

1 Publications

  • Page 1 of 1

The bovine epimural microbiota displays compositional and structural heterogeneity across different ruminal locations.

J Dairy Sci 2020 Apr 11;103(4):3636-3647. Epub 2020 Feb 11.

Department of Bacteriology, University of Wisconsin-Madison, Madison 53706. Electronic address:

Dairy cattle are globally important agricultural animals. Central to their biology is the rumen, which houses an essential microbial community, or microbiome, important for providing nutrition from otherwise host-inaccessible dietary components. The rumen environment is noted for its substantial spatial heterogeneity, as illustrated by the stratification into ruminal solid and liquid phases. A third microbiota found directly attached to the ruminal epithelium (the epimural microbiota) also exists but is less well understood because of challenges in sampling the ruminal epithelium. As a result, our understanding of the epimural microbiota is based on analyses of cannulated animals sampled at a single location-the ventral sac-and does not account for other ruminal locations, which may have importance for overall rumen function. To address this knowledge gap, we hypothesize that the epimural microbiota at different ruminal locations differs due to known morphological, physiological, and functional differences across the geographic spread of the rumen epithelium. Here, we characterized bacterial epimural communities at different sites within 8 lactating Holstein dairy cows using 16S rRNA gene sequencing. Four different sites were sampled via rumen tissue biopsy: cranial sac (CS), ventral sac (VS), caudodorsal blind sac (CDBS), and caudoventral blind sac (CVBS). We found that locations differed in both epimural bacterial community structure and composition, with the CDBS community displaying the greatest diversity. Across all sampling sites, epimural bacterial communities were dominated by members of the phyla Bacteroidetes, Firmicutes, and Proteobacteria. Bacteria within Prevotellaceae, Butyrivibrio, Campylobacter, Mogibacterium, and Desulfobulbus all showed high relative sequence abundance and differential distributions according to sample location. There appears to be a core epimural microbiota present across all locations in all cows, although relative abundance was highly variable. The difference in relative abundance in epimural microbial communities, perhaps influenced by host physiology and the diversity within rumen contents, likely has important consequences for nutrition acquisition and general health. To the best of our knowledge, this work represents the first characterization of the ruminal epimural microbiota across different epithelial locations for any bovine ruminant.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2019-17649DOI Listing
April 2020
-->