Publications by authors named "Déborah Romaskevis Gomes Lopes"

5 Publications

  • Page 1 of 1

Characterization of the biofilm structure and microbial diversity of sulfate-reducing bacteria from petroleum produced water supplemented by different carbon sources.

J Environ Manage 2022 Feb 1;304:114189. Epub 2021 Dec 1.

Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil. Electronic address:

Colonization by sulfate-reducing bacteria (SRB) in environments associated with oil is mainly dependent on the availability of sulfate and carbon sources. The formation of biofilms by SRB increases the corrosion of pipelines and oil storage tanks, representing great occupational and operational risks and respective economic losses for the oil industry. The aim of this study was to evaluate the influence of the addition of acetate, butyrate, lactate, propionate and oil on the structure of biofilm formed in carbon steel coupons, as well as on the diversity of total bacteria and SRB in the planktonic and sessile communities from petroleum produced water. The biofilm morphology, chemical composition, average roughness and the microbial diversity was analyzed. In all carbon sources, formation of dense biofilm without morphological and/or microbial density differences was detected, with the most of cells observed in the form of individual rods. The diversity and richness indices of bacterial species in the planktonic community was greater than in the biofilm. Geotoga was the most abundant genus, and more than 85% of SRB species were common to all treatments. The functional predicted profile shown that the observed genres in planktonic communities were related to the reduction of sulfate, sulfite, elementary sulfur and other sulfur compounds, but the abundance varied between treatments. For the biofilm, the functions predicted profile for the oil treatment was the one that most varied in relation to the control, while for the planktonic community, the addition of all carbon sources interfered in the predicted functional profile. Thus, although it does not cause changes in the structure and morphology biofilm, the supplementation of produced water with different carbon sources is associated with changes in the SRB taxonomic composition and functional profiles of the biofilm and the planktonic bacterial communities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.114189DOI Listing
February 2022

Assessing the relationship between the rumen microbiota and feed efficiency in Nellore steers.

J Anim Sci Biotechnol 2021 Jul 15;12(1):79. Epub 2021 Jul 15.

Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.

Background: Ruminants rely upon a complex community of microbes in their rumen to convert host-indigestible feed into nutrients. However, little is known about the association between the rumen microbiota and feed efficiency traits in Nellore (Bos indicus) cattle, a breed of major economic importance to the global beef market. Here, we compare the composition of the bacterial, archaeal and fungal communities in the rumen of Nellore steers with high and low feed efficiency (FE) phenotypes, as measured by residual feed intake (RFI).

Results: The Firmicutes to Bacteroidetes ratio was significantly higher (P < 0.05) in positive-RFI steers (p-RFI, low feed efficiency) than in negative-RFI (n-RFI, high feed efficiency) steers. The differences in bacterial composition from steers with high and low FE were mainly associated with members of the families Lachnospiraceae, Ruminococcaceae and Christensenellaceae, as well as the genus Prevotella. Archaeal community richness was lower (P < 0.05) in p-RFI than in n-RFI steers and the genus Methanobrevibacter was either increased or exclusive of p-RFI steers. The fungal genus Buwchfawromyces was more abundant in the rumen solid fraction of n-RFI steers (P < 0.05) and a highly abundant OTU belonging to the genus Piromyces was also increased in the rumen microbiota of high-efficiency steers. However, analysis of rumen fermentation variables and functional predictions indicated similar metabolic outputs for the microbiota of distinct FE groups.

Conclusions: Our results demonstrate that differences in the ruminal microbiota of high and low FE Nellore steers comprise specific taxa from the bacterial, archaeal and fungal communities. Biomarker OTUs belonging to the genus Piromyces were identified in animals showing high feed efficiency, whereas among archaea, Methanobrevibacter was associated with steers classified as p-RFI. The identification of specific RFI-associated microorganisms in Nellore steers could guide further studies targeting the isolation and functional characterization of rumen microbes potentially important for the energy-harvesting efficiency of ruminants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40104-021-00599-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8281616PMC
July 2021

Effect of the ingestion of vegetable oils associated with energy-restricted normofat diet on intestinal microbiota and permeability in overweight women.

Food Res Int 2021 01 7;139:109951. Epub 2020 Dec 7.

Laboratory of Studies in Food Ingestion, Department of Nutrition and Health, Federal University of Vicosa, Avenida PH Rolfs, s/n, CEP 36570-900 Vicosa, Minas Gerais, Brazil. Electronic address:

Previous studies suggest that the type of dietary fatty acid may modulate the intestinal bacterial ecosystem. However, this effect is still inconclusive. Thus, the aim of this study was to investigate the effect of the intake of vegetable oils rich in different types of fatty acids, associated with energy-restricted normofat diets, on the composition of intestinal microbiota and permeability, on LPS concentrations, and fecal short chain fatty acids and pH. This was a 9 consecutive weeks (±5 days), randomized, parallel, double-blind clinical trial. Overweight women received daily breakfast containing 25 mL of one of the test oils: soybean oil (n = 17), extra virgin olive oil (n = 19) or coconut oil (n = 16). Blood, fecal and urine samples were collected on the first and last day of the experiment for the analysis of the variables of interest. The consumption of the three oils did not affect the diversity and relative abundance of intestinal bacteria. We observed an increase in bacterial richness estimated by the Chao 1 index, and a reduction in the concentration of isovaleric fatty acid in the group that ingested soybean oil. Paracellular and transcellular permeability increased after the ingestion of extra virgin olive oil and coconut oil. However, LPS concentrations remained unchanged. The intake of different types of fatty acids associated with the energy-restricted normofat diet modestly affected the intestinal microbiota and permeability, without resulting in metabolic endotoxemia in overweight women.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2020.109951DOI Listing
January 2021

Morphology and composition of the midgut bacterial community of Scaptocoris castanea Perty, 1830 (Hemiptera: Cydnidae).

Cell Tissue Res 2020 Nov 23;382(2):337-349. Epub 2020 May 23.

Departamento de Biologia Geral, Universidade Federal de Viçosa, Vicosa, Minas Gerais, 36570-000, Brazil.

The burrower bug Scaptocoris castanea is an important soybean and pasture pest in Brazil, with an underground habit feeding directly on the sap of the roots. Underground habit hinders control and knowledge of the biology and physiology of this pest. This study describes the anatomy, histology, ultrastructure and symbionts of the midgut of S. castanea. The midgut of S. castanea is anatomically divided into five regions (ventricles). Ventricles 1-3 are similar between males and females, with cells specialized in digestion and absorption of nutrients, water transport and homeostasis. Ventricle 4 has squamous epithelium forming crypts and harboring bacteria in the lumen. Ventricle 5 of males is small with cells containing apical microvilli and broad basal folds with many openings for hemocoel, while in females, this region of the midgut is well developed and colonized by intracellular bacteria, characterizing bacteriocytes. The main bacteria are Gammaproteobacteria. The results show sexual dimorphism in ventricle 5 of the midgut of S. castanea, with formation of bacteriocytes in the females, while the other regions are involved in digestive processes in both sexes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-020-03197-7DOI Listing
November 2020

The Bacterial and Fungal Microbiota of Nelore Steers Is Dynamic Across the Gastrointestinal Tract and Its Fecal-Associated Microbiota Is Correlated to Feed Efficiency.

Front Microbiol 2019 25;10:1263. Epub 2019 Jun 25.

Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil.

The ruminant gastrointestinal tract (GIT) microbiome plays a major role in the health, physiology and production traits of the host. In this work, we characterized the bacterial and fungal microbiota of the rumen, small intestine (SI), cecum and feces of 27 Nelore steers using next-generation sequencing and evaluated biochemical parameters within the GIT segments. We found that only the bacterial microbiota clustered according to each GIT segment. Bacterial diversity and richness as well as volatile fatty acid concentration was lowest in the SI. Taxonomic grouping of bacterial operational taxonomic units (OTUs) revealed that (24.61 ± SD 6.58%) and (20.87 ± SD 4.22%) were the two most abundant taxa across the GIT. For the fungi, the family dominated in all GIT segments, with the genus being the most abundant. Twenty-eight bacterial and six fungal OTUs were shared across all GIT segments in at least 50% of the steers. We also evaluated if the fecal-associated microbiota of steers showing negative and positive residual feed intake (n-RFI and p-RFI, respectively) was associated with their feed efficiency phenotype. Diversity indices for both bacterial and fungal fecal microbiota did not vary between the two feed efficiency groups. Differences in the fecal bacterial composition between high and low feed efficiency steers were primarily assigned to OTUs belonging to the families and and to the genus . The fungal OTUs shared across the GIT did not vary between feed efficiency groups, but 7 and 3 OTUs were found only in steers with positive and negative RFI, respectively. These results provide further insights into the composition of the Nelore GIT microbiota, which could have implications for improving animal health and productivity. Our findings also reveal differences in fecal-associated bacterial OTUs between steers from different feed efficiency groups, suggesting that fecal sampling may represent a non-invasive strategy to link the bovine microbiota with productivity phenotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fmicb.2019.01263DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603086PMC
June 2019
-->