Publications by authors named "Cristian V A Munteanu"

16 Publications

  • Page 1 of 1

EDEM3 Domains Cooperate to Perform Its Overall Cell Functioning.

Int J Mol Sci 2021 Feb 22;22(4). Epub 2021 Feb 22.

Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independentei 296, 060031 Bucharest 17, Romania.

EDEM3 recognizes and directs misfolded proteins to the ER-associated protein degradation (ERAD) process. EDEM3 was predicted to act as lectin or as a mannosidase because of its homology with the GH47 catalytic domain of the Man1B1, but the contribution of the other regions remained unresolved. Here, we dissect the molecular determinants governing EDEM3 function and its cellular interactions. LC/MS analysis indicates very few stable ER interactors, suggesting EDEM3 availability for transient substrate interactions. Sequence analysis reveals that EDEM3 consists of four consecutive modules defined as GH47, intermediate (IMD), protease-associated (PA), and intrinsically disordered (IDD) domain. Using an EDEM3 knock-out cell line, we expressed EDEM3 and domain deletion mutants to address EDEM3 function. We find that the mannosidase domain provides substrate binding even in the absence of mannose trimming and requires the IMD domain for folding. The PA and IDD domains deletions do not impair the trimming, but specifically modulate the turnover of two misfolded proteins, NHK and the soluble tyrosinase mutant. Hence, we demonstrate that EDEM3 provides a unique ERAD timing to misfolded glycoproteins, not only by its mannose trimming activity, but also by the positive and negative feedback modulated by the protease-associated and intrinsically disordered domain, respectively.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22042172DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926307PMC
February 2021

Rare-Earth Metal Complexes of the Antibacterial Drug Oxolinic Acid: Synthesis, Characterization, DNA/Protein Binding and Cytotoxicity Studies.

Molecules 2020 Nov 19;25(22). Epub 2020 Nov 19.

Department of General and Inorganic Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia St, 020956 Bucharest, Romania.

"Drug repositioning" is a current trend which proved useful in the search for new applications for existing, failed, no longer in use or abandoned drugs, particularly when addressing issues such as bacterial or cancer cells resistance to current therapeutic approaches. In this context, six new complexes of the first-generation quinolone oxolinic acid with rare-earth metal cations (Y, La, Sm, Eu, Gd, Tb) have been synthesized and characterized. The experimental data suggest that the quinolone acts as a bidentate ligand, binding to the metal ion via the keto and carboxylate oxygen atoms; these findings are supported by DFT (density functional theory) calculations for the Sm complex. The cytotoxic activity of the complexes, as well as the ligand, has been studied on MDA-MB 231 (human breast adenocarcinoma), LoVo (human colon adenocarcinoma) and HUVEC (normal human umbilical vein endothelial cells) cell lines. UV-Vis spectroscopy and competitive binding studies show that the complexes display binding affinities (K) towards double stranded DNA in the range of 9.33 × 10 - 10.72 × 10. Major and minor groove-binding most likely play a significant role in the interactions of the complexes with DNA. Moreover, the complexes bind human serum albumin more avidly than apo-transferrin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules25225418DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699381PMC
November 2020

High resolution mass spectrometry provides novel insights into the ganglioside pattern of brain cavernous hemangioma.

Anal Biochem 2020 11 26;609:113976. Epub 2020 Sep 26.

National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania; "Aurel Vlaicu" University of Arad, Arad, Romania. Electronic address:

In this study we have optimized nanoelectrospray ionization (nanoESI) high resolution mass spectrometry (HR MS) performed on Orbitrap instrument in the negative ion mode for the determination of the composition and structure of gangliosides extracted from human brain cavernous hemangioma. The optimized HR MS platform, allowed the discrimination of 62 ions, corresponding to 52 different ganglioside species, which represents roughly twice the number of species existing in the current inventory of human brain hemangioma-associated gangliosides. The experiments revealed a ganglioside pattern dominated by GD-type of structures as well as an elevated incidence of species characterized by a low degree of sialylation and short glycan chains, including asialo GA1 (d18:1/18:0), which offer a new perspective upon the ganglioside composition in this benign tumor. Many of the structures are characteristic for this type of tumor only and are to be considered in further investigations for their potential use in early brain hemangioma diagnosis based on molecular markers. The detailed fragmentation analysis performed by collision-induced dissociation (CID) tandem MS provided information of structural elements related to the glycan core and ceramide moiety, which confirmed the molecular configuration of GD3 (d18:1/24:1) and GD3 (d18:1/24:2) species with potential biomarker role.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2020.113976DOI Listing
November 2020

EDEM1 Drives Misfolded Protein Degradation via ERAD and Exploits ER-Phagy as Back-Up Mechanism When ERAD Is Impaired.

Int J Mol Sci 2020 May 14;21(10). Epub 2020 May 14.

Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independentei 296, 060031 Bucharest 17, Romania.

Endoplasmic reticulum (ER)-associated degradation (ERAD) is the main mechanism of targeting ER proteins for degradation to maintain homeostasis, and perturbations of ERAD lead to pathological conditions. ER-degradation enhancing α-mannosidase-like (EDEM1) was proposed to extract terminally misfolded proteins from the calnexin folding cycle and target them for degradation by ERAD. Here, using mass-spectrometry and biochemical methods, we show that EDEM1 is found in auto-regulatory complexes with ERAD components. Moreover, the N-terminal disordered region of EDEM1 mediates protein-protein interaction with misfolded proteins, whilst the absence of this domain significantly impairs their degradation. We also determined that overexpression of EDEM1 can induce degradation, even when proteasomal activity is severely impaired, by promoting the formation of aggregates, which can be further degraded by autophagy. Therefore, we propose that EDEM1 maintains ER homeostasis and mediates ERAD client degradation via autophagy when either dislocation or proteasomal degradation are impaired.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21103468DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279049PMC
May 2020

Functionalized Graphene Oxide Thin Films for Anti-tumor Drug Delivery to Melanoma Cells.

Front Chem 2020 23;8:184. Epub 2020 Mar 23.

Photonic Investigations Laboratory, Center for Advanced Laser Technologies, National Institute for Lasers, Plasma and Radiation Physics, Magurele, Romania.

Since Graphene discovery, their associated derivate nanomaterials, Graphene Oxide (GO) and reduced-GO were in the forefront of continuous developments in bio-nano-technology due to unique physical-chemical properties. Although GO nano-colloids (GON) were proposed as drug release matrix for targeting cancer cells, there is still a concern regarding its cytotoxicity issues. In this study, we report on the fabrication of functional GON bio-coatings by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) to be used as drug carriers for targeting melanoma cells. We first performed a thorough cytotoxicity assay for comparison between GON and protein functionalized GON coatings. As functionalization protein, Bovine Serum Albumin (BSA) was non-covalently conjugated to GO surface. Safe concentration windows were identified in cytotoxicity tests by live/dead staining and MTS assays for five different human melanoma cell lines as well as for non-transformed melanocytes and human dermal fibroblasts. Hybrid GON-BSA nano-scaled thin coatings incorporating Dabrafenib (DAB) and Trichostatin A (TSA) inhibitors for cells bearing BRAF pathway activating mutation were assembled on solid substrates by MAPLE technique. We further demonstrated the successful immobilization for each drug-containing GON-BSA assembling systems by evaluating cellular BRAF activity inhibition and histone deacetylases activity blocking, respectively. DAB activity was proven by the decreased ERK phosphorylation in primary melanoma cells (SKmel28 BRAF cell line), while TSA effect was evidenced by acetylated histones accumulation in cell's nuclei (SKmel23 BRAF WT cell line). In addition, melanoma cells exposed to GON-BSA coatings with compositional gradient of inhibitors evidenced a dose-dependent effect on target activity. Such functional bio-platforms could present high potential for cell-biomaterial interface engineering to be applied in personalized cancer therapy studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fchem.2020.00184DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7104690PMC
March 2020

Orbitrap mass spectrometry for monitoring the ganglioside pattern in human cerebellum development and aging.

J Mass Spectrom 2020 May 21;55(5):e4502. Epub 2020 Feb 21.

Department of Mass Spectrometry, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.

We have developed here a superior approach based on high-resolution (HR) mass spectrometry (MS) for monitoring the changes occurring with development and aging in the composition and structure of cerebellar gangliosidome. The experiments were focused on the comparative screening and structural analysis of gangliosides expressed in fetal and aged cerebellum by Orbitrap MS with nanoelectrospray ionization (nanoESI) in the negative ion mode. The employed ultrahigh-resolution MS platform allowed the discrimination, without the need of previous separation, of 159 ions corresponding to 120 distinct species in the native ganglioside mixtures from fetal and aged cerebellar biopsies, many more than detected before, when MS platforms of lower resolution were employed. A number of gangliosides, in particular polysialylated belonging to GT, GQ, GP, and GS classes, modified by O-fucosylation, O-acetylation, or CH COO were discovered here, for the first time in human cerebellum. These components, found differently expressed in fetal and aged tissues, indicated that the ganglioside profile in cerebellum is development stage- and age-specific. Following the fragmentation analysis by high-energy collision-induced dissociation (HCD) tandem MS (MS/MS), we have also observed that the intimate structure of certain compounds has not changed during the development and aging of the brain, an aspect which could open new directions in the investigation of ganglioside biomarkers in cerebellar tissue.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jms.4502DOI Listing
May 2020

Analysis of EYA3 Phosphorylation by Src Kinase Identifies Residues Involved in Cell Proliferation.

Int J Mol Sci 2019 Dec 13;20(24). Epub 2019 Dec 13.

Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania.

Eyes absent (EYA) are non-thiol-based protein tyrosine phosphatases (PTPs) that also have transcriptional co-activator functions. Their PTP activity is involved in various pathologies. Recently, we demonstrated that Src tyrosine kinase phosphorylates human EYA3 by controlling its subcellular localization. We also found EYA3's ability to autodephosphorylate, while raising the question if the two opposing processes could be involved in maintaining a physiologically adequate level of phosphorylation. Using native and bottom-up mass spectrometry, we performed detailed mapping and characterization of human EYA3 Src-phosphorylation sites. Thirteen tyrosine residues with different phosphorylation and autodephosphorylation kinetics were detected. Among these, Y77, 96, 237, and 508 displayed an increased resistance to autodephosphorylation. Y77 and Y96 were found to have the highest impact on the overall EYA3 phosphorylation. Using cell cycle analysis, we showed that Y77, Y96, and Y237 are involved in HEK293T proliferation. Mutation of the three tyrosine residues abolished the pro-proliferative effect of EYA3 overexpression. We have also identified a Src-induced phosphorylation pattern of EYA3 in these cells. These findings suggest that EYA3's tyrosine phosphorylation sites are non-equivalent with their phosphorylation levels being under the control of Src-kinase activity and of EYA3's autodephosphorylation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms20246307DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940942PMC
December 2019

Profiling Optimal Conditions for Capturing EDEM Proteins Complexes in Melanoma Using Mass Spectrometry.

Adv Exp Med Biol 2019 ;1140:155-167

Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania.

Endoplasmic reticulum (ER) resident and secretory proteins that fail to reach their native conformation are selected for degradation through the ER-Associated Degradation (ERAD) pathway. The ER degradation-enhancing alpha-mannosidase-like proteins (EDEMs) were shown to be involved in this pathway but their precise role is still under investigation. Mass spectrometry analysis has contributed significantly to the characterization of protein complexes in the last years. The recent advancements in instrumentation, especially within resolution and speed can provide unique insights concerning the molecular architecture of protein-protein interactions in systems biology. Previous reports have suggested that several protein complexes in ERAD are sensitive to the extraction conditions. Indeed, whilst EDEM proteins can be recovered in most detergents, some of their partners are not solubilized, which further emphasizes the importance of the experimental setup. Here, we define such dynamic interactions of EDEM proteins by employing offline protein fractionation, nanoLC-MS/MS and describe how mass spectrometry can contribute to the characterization of such complexes, particularly within a disease context like melanoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-030-15950-4_9DOI Listing
September 2019

Gangliosidome of human anencephaly: A high resolution multistage mass spectrometry study.

Biochimie 2019 Aug 13;163:142-151. Epub 2019 Jun 13.

National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania; "Aurel Vlaicu" University of Arad, Arad, Romania. Electronic address:

Widely dispersed throughout the entire body tissues, gangliosides (GGs) are essential components of neuronal cell membranes, where exhibit a vital role in neuronal function and brain development, directly influencing the neural tube formation, neurogenesis, neurotransmission, etc. Due to several factors, partial or complete closing faults of the fetal neural tube may occur in the first trimester of pregnancy, generating a series of neural tube defects (NTD), among which anencephaly. The absence in anencephaly of the forebrain and skull bones determines the exposure to the amniotic fluid of the remaining brain tissue and the spinal cord, causing the degeneration of the nervous system tissue. Based on the previously achieved information related to the direct alteration of neural development with deficient concentration of several GGs, a systematic and comparative mass spectrometry (MS) mapping assay on GGs originating from fetuses in different intrauterine developmental stages, i.e. the 29th (denoted An29), 35th (An35) and the 37th (An37) gestational weeks was here conducted. Our approach, based on Orbitrap MS under high sensitivity, resolution and mass accuracy conditions, enabled for the first time the nanoelectrospray ionization, detection and identification of over 150 glycoforms, mainly novel, polysialylated species. Such a pattern, specific for incipient developmental stages reliably documents the brain development stagnation, characteristic for anencephaly. Further, the fragmentation MS-MS experiments by collision induced dissociation (CID) confirmed the incidence in all three samples of GT2(d18:1/16:2) as a potential biomarker. Therefore, this fingerprinting of the anencephalic gangliosidome may serve in development of approaches for routine screening and early diagnosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2019.05.017DOI Listing
August 2019

Assessment of ganglioside age-related and topographic specificity in human brain by Orbitrap mass spectrometry.

Anal Biochem 2017 03 11;521:40-54. Epub 2017 Jan 11.

National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania; Aurel Vlaicu University of Arad, Romania. Electronic address:

The gangliosides (GGs) of the central nervous system (CNS) exhibit age and topographic specificity and these patterns may correlate with the functions and pathologies of the brain regions. Here, chloroform extraction, nanoelectrospray (nanoESI) negative ionization, together with Orbitrap high resolution mass spectrometry (MS) determined the topographic and age-related GG specificity in normal adult human brain. Mapping of GG mixtures extracted from 20 to 82 year old frontal and occipital lobes revealed besides a decrease in the GG number with age, a variability of sialylation degree within the brain regions. From the 111 species identified, 105 were distinguished in the FL20, 74 in OL20, 46 in FL82 and 56 in OL82. The results emphasize that within the juvenile brain, GG species exhibit a higher expression in the FL than in OL, while in the aged brain the number of GG species is higher in the OL. By applying MS/MS analysis, the generated fragment ions confirmed the incidence of GT1c (d18:1/18:0) and GT1c (d18:1/20:0) in the investigated samples. The present findings are of major value for further clinical studies carried out using Orbitrap MS in order to correlate gangliosides with CNS disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2017.01.010DOI Listing
March 2017

Cross-talk between Dopachrome Tautomerase and Caveolin-1 Is Melanoma Cell Phenotype-specific and Potentially Involved in Tumor Progression.

J Biol Chem 2016 Jun 6;291(24):12481-12500. Epub 2016 Apr 6.

Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania. Electronic address:

l-Dopachrome tautomerase (l-DCT), also called tyrosinase-related protein-2 (TRP-2), is a melanoma antigen overexpressed in most chemo-/radiotherapeutic stress-resistant tumor clones, and caveolin-1 (CAV1) is a main regulator of numerous signaling processes. A structural and functional relationship between DCT and CAV1 is first presented here in two human amelanotic melanoma cell lines, derived from vertical growth phase (MelJuSo) and metastatic (SKMel28) melanomas. DCT co-localizes at the plasma membrane with CAV1 and Cavin-1, another molecular marker for caveolae in both cell phenotypes. Our novel structural model proposed for the DCT-CAV1 complex, in addition to co-immunoprecipitation and mass spectrometry data, indicates a possible direct interaction between DCT and CAV1. The CAV1 control on DCT gene expression, DCT post-translational processing, and subcellular distribution is cell phenotype-dependent. DCT is a modulator of CAV1 stability and supramolecular assembly in both cell phenotypes. During autocrine stimulation, the expressions of DCT and CAV1 are oppositely regulated; DCT increases while CAV1 decreases. Sub-confluent MelJuSo clones DCT(high)/CAV1(low) are proliferating and acquire fibroblast-like morphology, forming massive, confluent clusters as demonstrated by immunofluorescent staining and TissueFAXS quantitative image cytometry analysis. CAV1 down-regulation directly contributes to the expansion of MelJuSo DCT(high) subtype. CAV1 involved in the perpetuation of cell phenotype-overexpressing anti-stress DCT molecule supports the concept that CAV1 functions as a tumor suppressor in early stages of melanoma. DCT is a regulator of the CAV1-associated structures and is possibly a new molecular player in CAV1-mediated processes in melanoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M116.714733DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933476PMC
June 2016

Epitope located N-glycans impair the MHC-I epitope generation and presentation.

Electrophoresis 2016 06 3;37(11):1448-60. Epub 2016 Feb 3.

Institute of Biochemistry, Romanian Academy, Bucharest, Romania.

The degradation process of the antigens specific to MHC-I presentation depends mainly on the proteasomal proteases in the cytosol. However, since many antigens are glycoproteins, including tumor antigens or viruses envelope proteins, their glycosylation status could also affect their processing and presentation. Here, we investigate the processing of tyrosinase, a multiple glycosylated tumor antigen overexpressed in human malignant melanoma. By LC-MS/MS analysis of human tyrosinase expressed in a melanoma cell, we show that all seven sites of tyrosinase are at least partially N-glycosylated. Using human CD8+ T-cell clones specific for the tyrosinase epitope YMDGTMSQV (369-377), including an N-glycosylation site, we found that transfectants of single and triple N-glycosylation mutants are recognized by specific T cells. Importantly, single, triple, and the aglycosylated tyrosinase mutants lacking the epitope located N-glycosylation site (N371D) were able to trigger higher CD8+ T-cell activation. The LC/MS analysis showed significant increase of the amount of YMDGTMSQV peptide resulted from accelerated oligomerization and degradation of aglycosylated mutants. The generation of the antigenic peptide by the antigen processing machinery is therefore largely independent of tyrosinase N-glycosylation. However, while distal N-glycans had no effect on the epitope generation, the mutants lacking the N371 glycan generated the antigenic peptide more efficiently. We conclude that epitope located N-glycans limit the ability of human tyrosinase to provide HLA-A2-restricted antigen for recognition by specific CD8+ T cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201500449DOI Listing
June 2016

Orbitrap mass spectrometry characterization of hybrid chondroitin/dermatan sulfate hexasaccharide domains expressed in brain.

Anal Biochem 2015 Sep 26;485:122-31. Epub 2015 Jun 26.

Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, RO-300224 Timisoara, Romania; Department of Chemical and Biological Sciences, "Aurel Vlaicu" University of Arad, RO-310130 Arad, Romania. Electronic address:

In the central nervous system, chondroitin/dermatan sulfate (CS/DS) glycosaminoglycans (GAGs) modulate neurotrophic effects and glial cell maturation during brain development. Previous reports revealed that GAG composition could be responsible for CS/DS activities in brain. In this work, for the structural characterization of DS- and CS-rich domains in hybrid GAG chains extracted from neural tissue, we have developed an advanced approach based on high-resolution mass spectrometry (MS) using nanoelectrospray ionization Orbitrap in the negative ion mode. Our high-resolution MS and multistage MS approach was developed and applied to hexasaccharides obtained from 4- and 14-week-old mouse brains by GAG digestion with chondroitin B and in parallel with AC I lyase. The expression of DS- and CS-rich domains in the two tissues was assessed comparatively. The analyses indicated an age-related structural variability of the CS/DS motifs. The older brain was found to contain more structures and a higher sulfation of DS-rich regions, whereas the younger brain was found to be characterized by a higher sulfation of CS-rich regions. By multistage MS using collision-induced dissociation, we also demonstrated the incidence in mouse brain of an atypical [4,5-Δ-GlcAGalNAc(IdoAGalNAc)2], presenting a bisulfated CS disaccharide formed by 3-O-sulfate-4,5-Δ-GlcA and 6-O-sulfate-GalNAc moieties.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2015.06.028DOI Listing
September 2015

Identification and structural characterization of novel O- and N-glycoforms in the urine of a Schindler disease patient by Orbitrap mass spectrometry.

J Mass Spectrom 2015 Sep;50(9):1044-1056

Aurel Vlaicu University of Arad, Arad, Romania.

Schindler disease is an inherited metabolic disorder caused by the deficient activity of α-N-acetylgalactosaminidase enzyme. An accurate diagnosis requires, besides clinical examination, complex and costly biochemical and molecular genetic tests. In the last years, mass spectrometry (MS) based on nanofluidics and high-resolution instruments has become a successful alternative for disease diagnosis based on the investigation of O-glycopeptides in patient urine. A complex mixture of glycoforms extracted from the urine of a 3-year-old patient was investigated by Orbitrap MS equipped with Nanospray Flex Ion Source in the negative ion mode. For structural characterization of several molecular species, collision-induced dissociation MS -MS was carried out using collision energy values within 20-60 eV range. By our approach, 39 novel species associated to this condition were identified, among which O-glycopeptides, free O-glycans and one structure corresponding to an N-glycan never characterized in the context of Schindler disease. The experiments conducted at a resolution of 60 000 allowed the discrimination and identification of a total number of 69 different species with an average mass accuracy of 9.87 ppm, an in-run reproducibility of almost 100%, an experiment-to-experiment and day-to-day reproducibility of about 95%. This study brings contributions in the diagnosis of Schindler disease through the elucidation of potential biomarker species in urine. Our multistage MS results completed with 39 new glycoforms the inventory of potential biomarker structures associated to Schindler disease. For the first time, an N-glycan was identified and structurally characterized in Schindler patient urine, which opens new research directions in the field. Copyright © 2015 John Wiley & Sons, Ltd.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jms.3616DOI Listing
September 2015

Phosphoketolases from Lactococcus lactis, Leuconostoc mesenteroides and Pseudomonas aeruginosa: dissimilar sequences, similar substrates but distinct enzymatic characteristics.

Appl Microbiol Biotechnol 2014 Sep 17;98(18):7855-67. Epub 2014 Apr 17.

Department of Enzymology, Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031, Bucharest, Romania,

Phosphoketolases (PKs) are large thiamine pyrophosphate (TPP)-dependent enzymes playing key roles in a number of essential pathways of carbohydrate metabolism. The putative PK genes of Lactococcus lactis (Ll) and Leuconostoc mesenteroides (Lm) were cloned in a prokaryotic vector, and the encoded proteins were expressed and purified yielding high purity proteins termed PK-Ll and PK-Lm, respectively. Similarly, the PK gene of Pseudomonas aeruginosa was expressed, and the corresponding protein (PK-Pa) was purified to homogeneity. The amino acid sequences predicted on the basis of genes' nucleotide sequences were confirmed by mass spectrometry and display low relative similarities. Circular dichroism (CD) spectra of these proteins predict higher α-helix than β-strand contents. In addition, it is predicted that PK-Ll contains tightly packed domains. Enzymatic analysis showed that all three recombinant proteins, despite their dissimilar amino acid sequences, are active PKs and accept both xylulose 5-phosphate (X5P) and fructose 6-phosphate (F6P) as substrates. However, they display substantially higher preference for X5P than for F6P. Kinetic measurements indicated that PK-Pa has the lowest Km values for X5P and F6P suggesting the highest capacity for substrate binding. PK-Ll has the largest kcat values for both substrates. Nevertheless, in terms of substrate specificity constant, PK-Pa has been found to be the most active PK against X5P. Structural models for all three analysed PKs predict similar folds in spite of amino acid sequence dissimilarities and contribute to understanding the enzymatic peculiarities of PK-Pa compared to PK-Ll and PK-Lm.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-014-5723-6DOI Listing
September 2014

Identification of an unusually sulfated tetrasaccharide chondroitin/dermatan motif in mouse brain by combining chip-nanoelectrospray multistage MS2 -MS4 and high resolution MS.

Electrophoresis 2013 Jun 8;34(11):1581-92. Epub 2013 May 8.

Department of Chemical and Biological Sciences, Aurel Vlaicu University of Arad, Arad, Romania.

Chondroitin sulfate (CS)/dermatan sulfate (DS) are often found in nature as hybrid glycosaminoglycan chains in various proteoglycans. In the recent years, several MS methods were developed for the determination of over-, regular-, and undersulfated CS/DS chains. In the present work, the released hybrid CS/DS isolated and purified from mouse brain were digested with chondroitin AC lyase. The depolymerized chains were separated by gel filtration chromatography. Collected tetrasaccharides were analyzed by fully automated (NanoMate robot) chip-based nanoESI high capacity ion trap multistage MS (MS(2) -MS(4) ) recently introduced in glycosaminoglycan research by our laboratory. The obtained data were confirmed by high resolution MS screening and MS/MS performed on QTOF instrument. NanoMate-high capacity ion trap MS and QTOF MS screening revealed the presence in the mixture of oversulfated tetrasaccharides bearing three and four sulfate groups as well as traces of regularly and undersulfated hexamers. Additionally, several saturated species as either tetramers or hexamers exhibiting different sulfate content were discovered in the analyzed fraction. This diversity of the sulfation status indicates that the mouse brain might contain several types of proteoglycans. The molecular ions corresponding to trisulfated-[4,5Δ-GlcA-GalNAc-IdoA-GalNAc] were subjected to multistage fragmentation by CID. Sequence analysis data allowed for the postulation of two rare structural motifs: [4,5Δ-GlcA-GalNAc(4S)-IdoA(2S,3S)-GalNAc] and [4,5Δ-GlcA-GalNAc-IdoA(2S,3S)-GalNAc(4S)], previously not reported in neural tissue.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201200704DOI Listing
June 2013