Publications by authors named "Craig Bolte"

18 Publications

  • Page 1 of 1

Nanoparticle Delivery of Proangiogenic Transcription Factors into the Neonatal Circulation Inhibits Alveolar Simplification Caused by Hyperoxia.

Am J Respir Crit Care Med 2020 07;202(1):100-111

Department of Pediatrics, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.

: Advances in neonatal critical care have greatly improved the survival of preterm infants, but the long-term complications of prematurity, including bronchopulmonary dysplasia (BPD), cause mortality and morbidity later in life. Although VEGF (vascular endothelial growth factor) improves lung structure and function in rodent BPD models, severe side effects of VEGF therapy prevent its use in patients with BPD.: To test whether nanoparticle delivery of proangiogenic transcription factor FOXM1 (forkhead box M1) or FOXF1 (forkhead box F1), both downstream targets of VEGF, can improve lung structure and function after neonatal hyperoxic injury.: Newborn mice were exposed to 75% O for the first 7 days of life before being returned to a room air environment. On Postnatal Day 2, polyethylenimine-(5) myristic acid/polyethylene glycol-oleic acid/cholesterol nanoparticles containing nonintegrating expression plasmids with or cDNAs were injected intravenously. The effects of the nanoparticles on lung structure and function were evaluated using confocal microscopy, flow cytometry, and the flexiVent small-animal ventilator.: The nanoparticles efficiently targeted endothelial cells and myofibroblasts in the alveolar region. Nanoparticle delivery of either FOXM1 or FOXF1 did not protect endothelial cells from apoptosis caused by hyperoxia but increased endothelial proliferation and lung angiogenesis after the injury. FOXM1 and FOXF1 improved elastin fiber organization, decreased alveolar simplification, and preserved lung function in mice reaching adulthood.: Nanoparticle delivery of FOXM1 or FOXF1 stimulates lung angiogenesis and alveolarization during recovery from neonatal hyperoxic injury. Delivery of proangiogenic transcription factors has promise as a therapy for BPD in preterm infants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1164/rccm.201906-1232OCDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328311PMC
July 2020

Molecular, cellular, and bioengineering approaches to stimulate lung regeneration after injury.

Semin Cell Dev Biol 2020 04 25;100:101-108. Epub 2019 Oct 25.

Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, United States. Electronic address:

The lung is susceptible to damage from a variety of sources throughout development and in adulthood. As a result, the lung has great capacities for repair and regeneration, directed by precisely controlled sequences of molecular and signaling pathways. Impairments or alterations in these signaling events can have deleterious effects on lung structure and function, ultimately leading to chronic lung disorders. When lung injury is too severe for the normal pathways to repair, or if those pathways do not function properly, lung regenerative medicine is needed to restore adequate structure and function. Great progress has been made in recent years in the number of regenerative techniques and their efficacy. This review will address recent progress in lung regenerative medicine focusing on pharmacotherapy including the expanding role of nanotechnology, stem cell-based therapies, and bioengineering techniques. The use of these techniques individually and collectively has the potential to significantly improve morbidity and mortality associated with congenital and acquired lung disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcdb.2019.10.006DOI Listing
April 2020

Postnatal Alveologenesis Depends on FOXF1 Signaling in c-KIT Endothelial Progenitor Cells.

Am J Respir Crit Care Med 2019 11;200(9):1164-1176

Center for Lung Regenerative Medicine.

Disruption of alveologenesis is associated with severe pediatric lung disorders, including bronchopulmonary dysplasia (BPD). Although c-KIT endothelial cell (EC) progenitors are abundant in embryonic and neonatal lungs, their role in alveolar septation and the therapeutic potential of these cells remain unknown. To determine whether c-KIT EC progenitors stimulate alveologenesis in the neonatal lung. We used single-cell RNA sequencing of neonatal human and mouse lung tissues, immunostaining, and FACS analysis to identify transcriptional and signaling networks shared by human and mouse pulmonary c-KIT EC progenitors. A mouse model of perinatal hyperoxia-induced lung injury was used to identify molecular mechanisms that are critical for the survival, proliferation, and engraftment of c-KIT EC progenitors in the neonatal lung. Pulmonary c-KIT EC progenitors expressing PECAM-1, CD34, VE-Cadherin, FLK1, and TIE2 lacked mature arterial, venal, and lymphatic cell-surface markers. The transcriptomic signature of c-KIT ECs was conserved in mouse and human lungs and enriched in FOXF1-regulated transcriptional targets. Expression of FOXF1 and c-KIT was decreased in the lungs of infants with BPD. In the mouse, neonatal hyperoxia decreased the number of c-KIT EC progenitors. Haploinsufficiency or endothelial-specific deletion of in mice increased apoptosis and decreased proliferation of c-KIT ECs. Inactivation of either or caused alveolar simplification. Adoptive transfer of c-KIT ECs into the neonatal circulation increased lung angiogenesis and prevented alveolar simplification in neonatal mice exposed to hyperoxia. Cell therapy involving c-KIT EC progenitors can be beneficial for the treatment of BPD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1164/rccm.201812-2312OCDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888649PMC
November 2019

The S52F FOXF1 Mutation Inhibits STAT3 Signaling and Causes Alveolar Capillary Dysplasia.

Am J Respir Crit Care Med 2019 10;200(8):1045-1056

Department of Pediatrics.

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal congenital disorder causing respiratory failure and pulmonary hypertension shortly after birth. There are no effective treatments for ACDMPV other than lung transplant, and new therapeutic approaches are urgently needed. Although ACDMPV is linked to mutations in the gene, molecular mechanisms through which FOXF1 mutations cause ACDMPV are unknown. To identify molecular mechanisms by which S52F FOXF1 mutations cause ACDMPV. We generated a clinically relevant mouse model of ACDMPV by introducing the S52F FOXF1 mutation into the mouse gene locus using CRISPR/Cas9 technology. Immunohistochemistry, whole-lung imaging, and biochemical methods were used to examine vasculature in lungs and identify molecular mechanisms regulated by FOXF1. FOXF1 mutations were identified in 28 subjects with ACDMPV. knock-in mice recapitulated histopathologic findings in ACDMPV infants. The S52F FOXF1 mutation disrupted STAT3-FOXF1 protein-protein interactions and inhibited transcription of , a critical transcriptional regulator of angiogenesis. STAT3 signaling and endothelial proliferation were reduced in mice and human ACDMPV lungs. S52F FOXF1 mutant protein did not bind chromatin and was transcriptionally inactive. Furthermore, we have developed a novel formulation of highly efficient nanoparticles and demonstrated that nanoparticle delivery of STAT3 cDNA into the neonatal circulation restored endothelial proliferation and stimulated lung angiogenesis in mice. FOXF1 acts through STAT3 to stimulate neonatal lung angiogenesis. Nanoparticle delivery of STAT3 is a promising strategy to treat ACDMPV associated with decreased STAT3 signaling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1164/rccm.201810-1897OCDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6794119PMC
October 2019

The Forkhead box F1 transcription factor inhibits collagen deposition and accumulation of myofibroblasts during liver fibrosis.

Biol Open 2019 Feb 11;8(2). Epub 2019 Feb 11.

Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA

Hepatic fibrosis is the common end stage to a variety of chronic liver injuries and is characterized by an excessive deposition of extracellular matrix (ECM), which disrupts the liver architecture and impairs liver function. The fibrous lesions are produced by myofibroblasts, which differentiate from hepatic stellate cells (HSC). The myofibroblast's transcriptional networks remain poorly characterized. Previous studies have shown that the Forkhead box F1 (FOXF1) transcription factor is expressed in HSCs and stimulates their activation during acute liver injury; however, the role of FOXF1 in the progression of hepatic fibrosis is unknown. In the present study, we generated mice to conditionally inactivate in myofibroblasts during carbon tetrachloride-mediated liver fibrosis. deletion increased collagen depositions and disrupted liver architecture. expression was significantly increased in -deficient mice while MMP9 activity was reduced. RNA sequencing of purified liver myofibroblasts demonstrated that FOXF1 inhibits expression of pro-fibrotic genes, , , and in fibrotic livers and binds to active repressors located in promotors and introns of these genes. Overexpression of FOXF1 inhibits , , and in primary murine HSCs Altogether, FOXF1 prevents aberrant ECM depositions during hepatic fibrosis by repressing pro-fibrotic gene transcription in myofibroblasts and HSCs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1242/bio.039800DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398469PMC
February 2019

FOXF1 transcription factor promotes lung morphogenesis by inducing cellular proliferation in fetal lung mesenchyme.

Dev Biol 2018 11 25;443(1):50-63. Epub 2018 Aug 25.

Center for Lung Regenerative Medicine, Divisions of Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Developmental Biology and Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States. Electronic address:

Organogenesis is regulated by mesenchymal-epithelial signaling events that induce expression of cell-type specific transcription factors critical for cellular proliferation, differentiation and appropriate tissue patterning. While mesenchymal transcription factors play a key role in mesenchymal-epithelial interactions, transcriptional networks in septum transversum and splanchnic mesenchyme remain poorly characterized. Forkhead Box F1 (FOXF1) transcription factor is expressed in mesenchymal cell lineages; however, its role in organogenesis remains uncharacterized due to early embryonic lethality of Foxf1 mice. In the present study, we generated mesenchyme-specific Foxf1 knockout mice (Dermo1-Cre Foxf1) and demonstrated that FOXF1 is required for development of respiratory, cardiovascular and gastrointestinal organ systems. Deletion of Foxf1 from mesenchyme caused embryonic lethality in the middle of gestation due to multiple developmental defects in the heart, lung, liver and esophagus. Deletion of Foxf1 inhibited mesenchyme proliferation and delayed branching lung morphogenesis. Gene expression profiling of micro-dissected distal lung mesenchyme and ChIP sequencing of fetal lung tissue identified multiple target genes activated by FOXF1, including Wnt2, Wnt11, Wnt5A and Hoxb7. FOXF1 decreased expression of the Wnt inhibitor Wif1 through direct transcriptional repression. Furthermore, using a global Foxf1 knockout mouse line (Foxf1) we demonstrated that FOXF1-deficiency disrupts the formation of the lung bud in foregut tissue explants. Finally, deletion of Foxf1 from smooth muscle cell lineage (smMHC-Cre Foxf1) caused hyper-extension of esophagus and trachea, loss of tracheal and esophageal muscle, mispatterning of esophageal epithelium and decreased proliferation of smooth muscle cells. Altogether, FOXF1 promotes lung morphogenesis by regulating mesenchymal-epithelial signaling and stimulating cellular proliferation in fetal lung mesenchyme.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2018.08.011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191344PMC
November 2018

Transcription Factors Regulating Embryonic Development of Pulmonary Vasculature.

Adv Anat Embryol Cell Biol 2018 ;228:1-20

Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.

Lung morphogenesis is a highly orchestrated process beginning with the appearance of lung buds on approximately embryonic day 9.5 in the mouse. Endodermally derived epithelial cells of the primitive lung buds undergo branching morphogenesis to generate the tree-like network of epithelial-lined tubules. The pulmonary vasculature develops in close proximity to epithelial progenitor cells in a process that is regulated by interactions between the developing epithelium and underlying mesenchyme. Studies in transgenic and knockout mouse models demonstrate that normal lung morphogenesis requires coordinated interactions between cells lining the tubules, which end in peripheral saccules, juxtaposed to an extensive network of capillaries. Multiple growth factors, microRNAs, transcription factors, and their associated signaling cascades regulate cellular proliferation, migration, survival, and differentiation during formation of the peripheral lung. Dysregulation of signaling events caused by gene mutations, teratogens, or premature birth causes severe congenital and acquired lung diseases in which normal alveolar architecture and the pulmonary capillary network are disrupted. Herein, we review scientific progress regarding signaling and transcriptional mechanisms regulating the development of pulmonary vasculature during lung morphogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-68483-3_1DOI Listing
November 2019

FOXF1 transcription factor promotes lung regeneration after partial pneumonectomy.

Sci Rep 2017 09 6;7(1):10690. Epub 2017 Sep 6.

Center for Lung Regenerative Medicine, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA.

FOXF1, a member of the forkhead box family of transcription factors, has been previously shown to be critical for lung development, homeostasis, and injury responses. However, the role of FOXF1 in lung regeneration is unknown. Herein, we performed partial pneumonectomy, a model of lung regeneration, in mice lacking one Foxf1 allele in endothelial cells (PDGFb-iCre/Foxf1 mice). Endothelial cell proliferation was significantly reduced in regenerating lungs from mice deficient for endothelial Foxf1. Decreased endothelial proliferation was associated with delayed lung regeneration as shown by reduced respiratory volume in Foxf1-deficient lungs. FACS-sorted endothelial cells isolated from regenerating PDGFb-iCre/Foxf1 and control lungs were used for RNAseq analysis to identify FOXF1 target genes. Foxf1 deficiency altered expression of numerous genes including those regulating extracellular matrix remodeling (Timp3, Adamts9) and cell cycle progression (Cdkn1a, Cdkn2b, Cenpj, Tubb4a), which are critical for lung regeneration. Deletion of Foxf1 increased Timp3 mRNA and protein, decreasing MMP14 activity in regenerating lungs. ChIPseq analysis for FOXF1 and histone methylation marks identified DNA regulatory regions within the Cd44, Cdkn1a, and Cdkn2b genes, indicating they are direct FOXF1 targets. Thus FOXF1 stimulates lung regeneration following partial pneumonectomy via direct transcriptional regulation of genes critical for extracellular matrix remodeling and cell cycle progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-017-11175-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587533PMC
September 2017

FOXF1 maintains endothelial barrier function and prevents edema after lung injury.

Sci Signal 2016 Apr 19;9(424):ra40. Epub 2016 Apr 19.

Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA. The Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.

Multiple signaling pathways, structural proteins, and transcription factors are involved in the regulation of endothelial barrier function. The forkhead protein FOXF1 is a key transcriptional regulator of embryonic lung development, and we used a conditional knockout approach to examine the role of FOXF1 in adult lung homeostasis, injury, and repair. Tamoxifen-regulated deletion of both Foxf1 alleles in endothelial cells of adult mice (Pdgfb-iCreER/Foxf1(-/-)) caused lung inflammation and edema, leading to respiratory insufficiency and death. Deletion of a single Foxf1 allele made heterozygous Pdgfb-iCreER/Foxf1(+/-)mice more susceptible to acute lung injury. FOXF1 abundance was decreased in pulmonary endothelial cells of human patients with acute lung injury. Gene expression analysis of pulmonary endothelial cells with homozygous FOXF1 deletion indicated reduced expression of genes critical for maintenance and regulation of adherens junctions. FOXF1 knockdown in vitro and in vivo disrupted adherens junctions, enhanced lung endothelial permeability, and increased the abundance of the mRNA and protein for sphingosine 1-phosphate receptor 1 (S1PR1), a key regulator of endothelial barrier function. Chromatin immunoprecipitation and luciferase reporter assays demonstrated that FOXF1 directly bound to and induced the transcriptional activity of the S1pr1 promoter. Pharmacological administration of S1P to injured Pdgfb-iCreER/Foxf1(+/-)mice restored endothelial barrier function, decreased lung edema, and improved survival. Thus, FOXF1 promotes normal lung homeostasis and repair, in part, by enhancing endothelial barrier function through activation of the S1P/S1PR1 signaling pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scisignal.aad1899DOI Listing
April 2016

Forkhead box F2 regulation of platelet-derived growth factor and myocardin/serum response factor signaling is essential for intestinal development.

J Biol Chem 2015 Mar 28;290(12):7563-75. Epub 2015 Jan 28.

From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and

Alterations in the forkhead box F2 gene expression have been reported in numerous pathologies, and Foxf2(-/-) mice are perinatal lethal with multiple malformations; however, molecular mechanisms pertaining to Foxf2 signaling are severely lacking. In this study, Foxf2 requirements in murine smooth muscle cells were examined using a conditional knock-out approach. We generated novel Foxf2-floxed mice, which we bred to smMHC-Cre-eGFP mice to generate a mouse line with Foxf2 deleted specifically from smooth muscle. These mice exhibited growth retardation due to reduced intestinal length as well as inflammation and remodeling of the small intestine. Colons of Tg(smMHC-Cre-eGFP(+/-));Foxf2(-/-) mice had expansion of the myenteric nerve plexus and increased proliferation of smooth muscle cells leading to thickening of the longitudinal smooth muscle layer. Foxf2 deficiency in colonic smooth muscle was associated with increased expression of Foxf1, PDGFa, PDGFb, PDGF receptor α, and myocardin. FOXF2 bound to promoter regions of these genes indicating direct transcriptional regulation. Foxf2 repressed Foxf1 promoter activity in co-transfection experiments. We also show that knockdown of Foxf2 in colonic smooth muscle cells in vitro and in transgenic mice increased myocardin/serum response factor signaling and increased expression of contractile proteins. Foxf2 attenuated myocardin/serum response factor signaling in smooth muscle cells through direct binding to the N-terminal region of myocardin. Our results indicate that Foxf2 signaling in smooth muscle cells is essential for intestinal development and serum response factor signaling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M114.609487DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367262PMC
March 2015

Foxm1 regulates resolution of hyperoxic lung injury in newborns.

Am J Respir Cell Mol Biol 2015 May;52(5):611-21

3 Division of Neonatology and Pulmonary Biology.

Current treatments for inflammation associated with bronchopulmonary dysplasia (BPD) fail to show clinical efficacy. Foxm1, a transcription factor of the Forkhead box family, is a critical mediator of lung development and carcinogenesis, but its role in BPD-associated pulmonary inflammation is unknown. Immunohistochemistry and RNA analysis were used to assess Foxm1 in lung tissue from hyperoxia-treated mice and patients with BPD. LysM-Cre/Foxm1(-/-) mice, in which Foxm1 was deleted from myeloid-derived inflammatory cells, including macrophages, monocytes, and neutrophils, were exposed to neonatal hyperoxia, causing lung injury and remodeling. Measurements of lung function and flow cytometry were used to evaluate the effects of Foxm1 deletion on pulmonary inflammation and repair. Increased Foxm1 expression was observed in pulmonary macrophages of hyperoxia-exposed mice and in lung tissue from patients with BPD. After hyperoxia, deletion of Foxm1 from the myeloid cell lineage decreased numbers of interstitial macrophages (CD45(+)CD11b(+)Ly6C(-)Ly6G(-)F4/80(+)CD68(-)) and impaired alveologenesis and lung function. The exaggerated BPD-like phenotype observed in hyperoxia-exposed LysM-Cre/Foxm1(-/-) mice was associated with increased expression of neutrophil-derived myeloperoxidase, proteinase 3, and cathepsin g, all of which are critical for lung remodeling and inflammation. Our data demonstrate that Foxm1 influences pulmonary inflammatory responses to hyperoxia, inhibiting neutrophil-derived enzymes and enhancing monocytic responses that limit alveolar injury and remodeling in neonatal lungs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1165/rcmb.2014-0091OCDOI Listing
May 2015

FOXF1 transcription factor is required for formation of embryonic vasculature by regulating VEGF signaling in endothelial cells.

Circ Res 2014 Sep 4;115(8):709-20. Epub 2014 Aug 4.

From the Divisons of Pulmonary Biology (X.R., V.U., A.P., Y.C., J.A.H., C.S.B., J.M.S., T.V.K., V.V.K.) and Developmental Biology (V.V.K.), Perinatal Institute, Cincinnati Children's Research Foundation, OH.

Rationale: Inactivating mutations in the Forkhead Box transcription factor F1 (FOXF1) gene locus are frequently found in patients with alveolar capillary dysplasia with misalignment of pulmonary veins, a lethal congenital disorder, which is characterized by severe abnormalities in the respiratory, cardiovascular, and gastrointestinal systems. In mice, haploinsufficiency of the Foxf1 gene causes alveolar capillary dysplasia and developmental defects in lung, intestinal, and gall bladder morphogenesis.

Objective: Although FOXF1 is expressed in multiple mesenchyme-derived cell types, cellular origins and molecular mechanisms of developmental abnormalities in FOXF1-deficient mice and patients with alveolar capillary dysplasia with misalignment of pulmonary veins remain uncharacterized because of lack of mouse models with cell-restricted inactivation of the Foxf1 gene. In the present study, the role of FOXF1 in endothelial cells was examined using a conditional knockout approach.

Methods And Results: A novel mouse line harboring Foxf1-floxed alleles was generated by homologous recombination. Tie2-Cre and Pdgfb-CreER transgenes were used to delete Foxf1 from endothelial cells. FOXF1-deficient embryos exhibited embryonic lethality, growth retardation, polyhydramnios, cardiac ventricular hypoplasia, and vascular abnormalities in the lung, placenta, yolk sac, and retina. Deletion of FOXF1 from endothelial cells reduced endothelial proliferation, increased apoptosis, inhibited vascular endothelial growth factor signaling, and decreased expression of endothelial genes critical for vascular development, including vascular endothelial growth factor receptors Flt1 and Flk1, Pdgfb, Pecam1, CD34, integrin β3, ephrin B2, Tie2, and the noncoding RNA Fendrr. Chromatin immunoprecipitation assay demonstrated that Flt1, Flk1, Pdgfb, Pecam1, and Tie2 genes are direct transcriptional targets of FOXF1.

Conclusions: FOXF1 is required for the formation of embryonic vasculature by regulating endothelial genes critical for vascular development and vascular endothelial growth factor signaling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.115.304382DOI Listing
September 2014

Postnatal ablation of Foxm1 from cardiomyocytes causes late onset cardiac hypertrophy and fibrosis without exacerbating pressure overload-induced cardiac remodeling.

PLoS One 2012 8;7(11):e48713. Epub 2012 Nov 8.

Division of Pulmonary Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America.

Heart disease remains a leading cause of morbidity and mortality in the industrialized world. Hypertrophic cardiomyopathy is the most common genetic cardiovascular disorder and the most common cause of sudden cardiac death. Foxm1 transcription factor (also known as HFH-11B, Trident, Win or MPP2) plays an important role in the pathogenesis of various cancers and is a critical mediator of post-injury repair in multiple organs. Foxm1 has been previously shown to be essential for heart development and proliferation of embryonic cardiomyocytes. However, the role of Foxm1 in postnatal heart development and in cardiac injury has not been evaluated. To delete Foxm1 in postnatal cardiomyocytes, αMHC-Cre/Foxm1(fl/fl) mice were generated. Surprisingly, αMHC-Cre/Foxm1(fl/fl) mice exhibited normal cardiomyocyte proliferation at postnatal day seven and had no defects in cardiac structure or function but developed cardiac hypertrophy and fibrosis late in life. The development of cardiomyocyte hypertrophy and cardiac fibrosis in aged Foxm1-deficient mice was associated with reduced expression of Hey2, an important regulator of cardiac homeostasis, and increased expression of genes critical for cardiac remodeling, including MMP9, αSMA, fibronectin and vimentin. We also found that following aortic constriction Foxm1 mRNA and protein were induced in cardiomyocytes. However, Foxm1 deletion did not exacerbate cardiac hypertrophy or fibrosis following chronic pressure overload. Our results demonstrate that Foxm1 regulates genes critical for age-induced cardiomyocyte hypertrophy and cardiac fibrosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048713PLOS
May 2013

Expression of Foxm1 transcription factor in cardiomyocytes is required for myocardial development.

PLoS One 2011 14;6(7):e22217. Epub 2011 Jul 14.

Division of Pulmonary Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America.

Forkhead Box M1 (Foxm1) is a transcription factor essential for organ morphogenesis and development of various cancers. Although complete deletion of Foxm1 in Foxm1(-/-) mice caused embryonic lethality due to severe abnormalities in multiple organ systems, requirements for Foxm1 in cardiomyocytes remain to be determined. This study was designed to elucidate the cardiomyocyte-autonomous role of Foxm1 signaling in heart development. We generated a new mouse model in which Foxm1 was specifically deleted from cardiomyocytes (Nkx2.5-Cre/Foxm1(fl/f) mice). Deletion of Foxm1 from cardiomyocytes was sufficient to disrupt heart morphogenesis and induce embryonic lethality in late gestation. Nkx2.5-Cre/Foxm1(fl/fl) hearts were dilated with thinning of the ventricular walls and interventricular septum, as well as disorganization of the myocardium which culminated in cardiac fibrosis and decreased capillary density. Cardiomyocyte proliferation was diminished in Nkx2.5-Cre/Foxm1(fl/fl) hearts owing to altered expression of multiple cell cycle regulatory genes, such as Cdc25B, Cyclin B(1), Plk-1, nMyc and p21(cip1). In addition, Foxm1 deficient hearts displayed reduced expression of CaMKIIδ, Hey2 and myocardin, which are critical mediators of cardiac function and myocardial growth. Our results indicate that Foxm1 expression in cardiomyocytes is critical for proper heart development and required for cardiomyocyte proliferation and myocardial growth.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0022217PLOS
November 2011

Kappa and delta opioid receptor signaling is augmented in the failing heart.

J Mol Cell Cardiol 2009 Oct 30;47(4):493-503. Epub 2009 Jun 30.

Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, 231 Albert Sabin Way ML0575, Cincinnati, OH 45267, USA.

The opioidergic system, an endogenous stress pathway, modulates cardiac function. Furthermore, opioid peptide and receptor expression is altered in a number of cardiac pathologies. However, whether the response of myocardial opioid receptor signaling is altered in heart failure progression is currently unknown. Elucidating possible alterations in and effects of opioidergic signaling in the failing myocardium is of critical importance as opioids are commonly used for pain management, including in patients at risk for cardiovascular disease. A hamster model of cardiomyopathy and heart failure (Bio14.6) was used to investigate cardiac opioidergic signaling in heart failure development. This study found an augmented negative inotropic and lusitropic response to administration of agonists selective for the kappa opioid receptor and delta opioid receptor in the failing heart that was mediated by a pertussis toxin-sensitive G-protein. The augmented decrease in cardiac function was manifested by increased inhibition of cAMP accumulation and the amplitude of the systolic Ca(2+) transient. Furthermore, increased depression of cardiac function and of two important second messengers, cAMP and intracellular Ca(2+), were independent of changes in cardiac opioid peptide or receptor expression. Thus, the cardiomyopathy-induced failing heart experiences increased cardiac depressant effects following opioid receptor stimulation which could exacerbate diminished cardiac function in end-stage heart failure. As cardiac function is already depressed in heart failure patients, administration of opioids could exacerbate the degree of cardiac dysfunction and worsen disease progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2009.06.016DOI Listing
October 2009

Hypertensive state, independent of hypertrophy, exhibits an attenuated decrease in systolic function on cardiac kappa-opioid receptor stimulation.

Am J Physiol Heart Circ Physiol 2009 Apr 30;296(4):H967-75. Epub 2009 Jan 30.

Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.

Opioids/opiates are commonly administered to alleviate pain, unload the heart, or decrease breathlessness in patients with advanced heart failure. As such, it is important to evaluate whether the myocardial opioidergic system is altered in cardiac disease. A hamster model of spontaneous hypertension was investigated before the development of hypertension (1 mo of age) and in the hypertensive state (10 mo of age) to evaluate the effect of prolonged hypertension on myocardial opioidergic activity. Plasma beta-endorphin was decreased before the development of hypertension and in the hypertensive state (P < 0.05). There was no change in cardiac beta-endorphin content at either time point. No differences were detected in cardiac or plasma dynorphin A, Met-enkephalin, or Leu-enkephalin, or in cardiac peptide expression of kappa- or delta-opioid receptors. mu-Opioid receptor was not detected in either model. To determine how hypertension affects myocardial opioid signaling, the ex vivo work-performing heart was used to assess the cardiac response to opioid administration in healthy hearts and those subjected to chronic hypertension. Agonists selective for the kappa- and delta-opioid receptors, but not mu-opioid receptors, induced a concentration-dependent decrease in cardiac function. The decrease in left ventricular systolic pressure on administration of the kappa-opioid receptor-selective agonist, U50488H, was attenuated in hearts from hamsters subjected to chronic, untreated hypertension (P < 0.05) compared with control. These results show that peripheral and myocardial opioid expression and signaling are altered in hypertension.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00909.2008DOI Listing
April 2009

Remote preconditioning-endocrine factors in organ protection against ischemic injury.

Endocr Metab Immune Disord Drug Targets 2007 Sep;7(3):167-75

Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, ML 0575, Cincinnati, OH 45267, USA.

Cardiovascular disease is the leading cause of death in the United States and developing world. Experimental and clinical studies have demonstrated that a number of interventions including brief periods of ischemia or hypoxia and certain endogenous factors such as opioids, bradykinin, growth factors or pharmacological agents are capable of protecting the heart against post-ischemic contractile dysfunction, arrhythmias and myocardial infarction. This conventional cardioprotection occurs via an autocrine or paracrine action in which these protective factors are released from the heart to act upon itself. Over the last ten years, a growing body of evidence indicates that a brief ischemic insult on one organ releases endogenous factors that protect other organs against a prolonged ischemic insult. This phenomenon, termed remote preconditioning or preconditioning at a distance, implicates an endocrine action, and may involve humoral or neural-endocrine signaling. This review will summarize the endocrine factors identified and implicated in this inter-organ cytoprotection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/187153007781662585DOI Listing
September 2007

Cardiac-specific overexpression of fibroblast growth factor-2 protects against myocardial dysfunction and infarction in a murine model of low-flow ischemia.

Circulation 2003 Dec 1;108(25):3140-8. Epub 2003 Dec 1.

Department of Pharmacology and Cell Biophysics, University of Cincinnati, 231 Albert Sabin Way, ML 0575, Cincinnati, Ohio 45267, USA.

Background: Preconditioning the heart before an ischemic insult has been shown to protect against contractile dysfunction, arrhythmias, and infarction. Pharmacological studies have suggested that fibroblast growth factor-2 (FGF2) is involved in cardioprotection. However, because of the number of FGFs expressed in the heart and the promiscuity of FGF ligand-receptor interactions, the specific role of FGF2 during ischemia-reperfusion injury remains unclear.

Methods And Results: FGF2-deficient (Fgf2 knockout) mice and mice with a cardiac-specific overexpression of all 4 isoforms of human FGF2 (FGF2 transgenic [Tg]) were compared with wild-type mice to test whether endogenous FGF2 elicits cardioprotection. An ex vivo work-performing heart model of ischemia was developed in which murine hearts were subjected to 60 minutes of low-flow ischemia and 120 minutes of reperfusion. Preischemic contractile function was similar among the 3 groups. After ischemia-reperfusion, contractile function of Fgf2 knockout hearts recovered to 27% of its baseline value compared with a 63% recovery in wild-type hearts (P<0.05). In FGF2 Tg hearts, an 88% recovery of postischemic function occurred (P<0.05). Myocardial infarct size was also reduced in FGF2 Tg hearts compared with wild-type hearts (13% versus 30%, P<0.05). There was a 2-fold increase in FGF2 release from Tg hearts compared with wild-type hearts (P<0.05). No significant alterations in coronary flow or capillary density were detected in any of the groups, implying that the protective effect of FGF2 is not mediated by coronary perfusion changes.

Conclusions: These results provide evidence that endogenous FGF2 plays a significant role in the cardioprotective effect against ischemia-reperfusion injury.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.CIR.0000105723.91637.1CDOI Listing
December 2003
-->