Publications by authors named "Coste Mawele Loudy"

2 Publications

  • Page 1 of 1

A nanopatterned dual reactive surface driven by block copolymer self-assembly.

Nanoscale 2020 Apr 27;12(14):7532-7537. Epub 2020 Mar 27.

Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques & de Physico-Chimie pour l'Environnement & les Matériaux, UMR5254, 64000, Pau, France.

Herein, we report the selective functionalization of nano-domains obtained by the self-assembly of a polystyrene-block-poly(vinyl benzyl azide) PS-b-PVBN copolymer synthesized in three steps. First, a polystyrene macro-initiator was synthesized, and then extended with vinyl benzyl chloride by nitroxide mediated polymerization to form polystyrene-block-poly(vinyl benzyl chloride) PS-b-PVBC. Nucleophilic substitution of vinyl benzyl chloride into a vinyl benzyl azide moiety is finally performed to obtain PS-b-PVBN which self-assembled into nano-domains of vinyl benzyl azide PVBN. Click chemistry was then used to bind functional gold nanoparticles and poly(N-isopropylacrylamide) (PNIPAM) on PVBN domains due to the specific anchoring at the surface of the nanopatterned film. Atomic force microscopy (AFM) was used to observe the block copolymer self-assembly and the alignment of the gold nanoparticles at the surface of the PVBN nanodomains. Thorough X-ray photoelectron spectroscopy (XPS) analysis of the functional film showed evidence of the sequential grafting of nanoparticles and PNIPAM. The hybrid surface expresses thermo-responsive properties and serves as a pattern to perfectly align and control the assembly of inorganic particles at the nanoscale.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
April 2020

[email protected] Functional Nanoparticle-Driven Rod-Coil Diblock Copolymer Self-Assembly.

Langmuir 2019 Dec 10;35(51):16925-16934. Epub 2019 Dec 10.

CNRS/Université de Pau et des Pays de l'Adour/E2S UPPA , IPREM CNRS-UMR 5254 Hélioparc , 2 Avenue Président Angot , 64053 Pau Cedex 9, France.

Herein, a novel strategy to overcome the influence of π-π stacking on the rod-coil copolymer organization is reported. A diblock copolymer poly(3-hexylthiophene)--poly(ethylene glycol methyl ether methacrylate) (P3HT--PEGMA) was synthesized by the Huisgen cycloaddition, so-called "click chemistry", combining the PEGMA and P3HT blocks synthesized by atom transfer radical polymerization and Kumada catalyst transfer polymerization, respectively. Using a dip-coating process, we controlled the original film organization of the diblock copolymer by the crystallization of the P3HT block via π-π stacking. The morphology of the P3HT--PEGMA films was influenced by the incorporation of gold nanoparticles (GNPs) coated by poly(ethylene glycol) ligands. Indeed, the crystalline structuration of the P3HT sequence was counterbalanced by the addition in the film of gold nanoparticles finely localized within the copolymer PEGMA matrix. Transmission electron microscopy and time-of-flight secondary ion mass spectrometry analysis validated the GNP homogeneous localization into the compatible PEGMA phase. Differential scanning calorimetry showed the rod block crystallization disruption. A morphological transition of the self-assembly is observed by atomic force microscopy from P3HT fibrils into out-of-plane cylinders driven by the nanophase segregation.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
December 2019