Publications by authors named "Corinne Stucki"

6 Publications

  • Page 1 of 1

Sodium Iodate-Induced Degeneration Results in Local Complement Changes and Inflammatory Processes in Murine Retina.

Int J Mol Sci 2021 Aug 26;22(17). Epub 2021 Aug 26.

Department of Ophthalmology, University Hospital of Bern, 3010 Bern, Switzerland.

Age-related macular degeneration (AMD), one of the leading causes of blindness worldwide, causes personal suffering and high socioeconomic costs. While there has been progress in the treatments for the neovascular form of AMD, no therapy is yet available for the more common dry form, also known as geographic atrophy. We analysed the retinal tissue in a mouse model of retinal degeneration caused by sodium iodate (NaIO)-induced retinal pigment epithelium (RPE) atrophy to understand the underlying pathology. RNA sequencing (RNA-seq), qRT-PCR, Western blot, immunohistochemistry of the retinas and multiplex ELISA of the mouse serum were applied to find the pathways involved in the degeneration. NaIO caused patchy RPE loss and thinning of the photoreceptor layer. This was accompanied by the increased retinal expression of complement components , , and . C1s, C3, CFH and CFB were complement proteins, with enhanced deposition at day 3. C4 was upregulated in retinal degeneration at day 10. Consistently, the transcript levels of proinflammatory , , , , and were increased in the retinas of NaIO mice, but mRNA was reduced. Macrophages, microglia and gliotic Müller cells could be a cellular source for local retinal inflammatory changes in the NaIO retina. Systemic complement and cytokines/chemokines remained unaltered in this model of NaIO-dependent retinal degeneration. In conclusion, systemically administered NaIO promotes degenerative and inflammatory processes in the retina, which can mimic the hallmarks of geographic atrophy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22179218DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431125PMC
August 2021

Common haplotypes at the CFH locus and low-frequency variants in CFHR2 and CFHR5 associate with systemic FHR concentrations and age-related macular degeneration.

Am J Hum Genet 2021 08 13;108(8):1367-1384. Epub 2021 Jul 13.

Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525EX, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525GA, the Netherlands. Electronic address:

Age-related macular degeneration (AMD) is the principal cause of blindness in the elderly population. A strong effect on AMD risk has been reported for genetic variants at the CFH locus, encompassing complement factor H (CFH) and the complement-factor-H-related (CFHR) genes, but the underlying mechanisms are not fully understood. We aimed to dissect the role of factor H (FH) and FH-related (FHR) proteins in AMD in a cohort of 202 controls and 216 individuals with AMD. We detected elevated systemic levels of FHR-1 (p = 1.84 × 10), FHR-2 (p = 1.47 × 10), FHR-3 (p = 1.05 × 10) and FHR-4A (p = 1.22 × 10) in AMD, whereas FH concentrations remained unchanged. Common AMD genetic variants and haplotypes at the CFH locus strongly associated with FHR protein concentrations (e.g., FH p.Tyr402His and FHR-2 concentrations, p = 3.68 × 10), whereas the association with FH concentrations was limited. Furthermore, in an International AMD Genomics Consortium cohort of 17,596 controls and 15,894 individuals with AMD, we found that low-frequency and rare protein-altering CFHR2 and CFHR5 variants associated with AMD independently of all previously reported genome-wide association study (GWAS) signals (p = 5.03 × 10 and p = 2.81 × 10, respectively). Low-frequency variants in CFHR2 and CFHR5 led to reduced or absent FHR-2 and FHR-5 concentrations (e.g., p.Cys72Tyr in CFHR2 and FHR-2, p = 2.46 × 10). Finally, we showed localization of FHR-2 and FHR-5 in the choriocapillaris and in drusen. Our study identifies FHR proteins as key proteins in the AMD disease mechanism. Consequently, therapies that modulate FHR proteins might be effective for treating or preventing progression of AMD. Such therapies could target specific individuals with AMD on the basis of their genotypes at the CFH locus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.06.002DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8387287PMC
August 2021

N-Terminomics identifies HtrA1 cleavage of thrombospondin-1 with generation of a proangiogenic fragment in the polarized retinal pigment epithelial cell model of age-related macular degeneration.

Matrix Biol 2018 09 20;70:84-101. Epub 2018 Mar 20.

Roche Pharma Research and Early Development, Neuroscience Ophthalmology and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland.

Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly population. Variants in the HTRA1-ARMS2 locus have been linked to increased AMD risk. In the present study we investigated the impact of elevated HtrA1 levels on the retina pigment epithelial (RPE) secretome using a polarized culture system. Upregulation of HtrA1 alters the abundance of key proteins involved in angiogenesis and extracellular matrix remodeling. Thrombospondin-1, an angiogenesis modulator, was identified as a substrate for HtrA1 using terminal amine isotope labeling of substrates in conjunction with HtrA1 specificity profiling. HtrA1 cleavage of thrombospondin-1 was further corroborated by in vitro cleavage assays and targeted proteomics together with small molecule inhibition of HtrA1. While thrombospondin-1 is anti-angiogenic, the proteolytically released N-terminal fragment promotes the formation of tube-like structure by endothelial cells. Taken together, our findings suggest a mechanism by which increased levels of HtrA1 may contribute to AMD pathogenesis. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier. For quantitative secretome analysis, project accession: PXD007691, username: [email protected], password: 1FUpS6Yq. For TAILS analysis, project accession: PXD007139, username: [email protected], password: sNbMp7xK.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.matbio.2018.03.013DOI Listing
September 2018

HtrA1 Mediated Intracellular Effects on Tubulin Using a Polarized RPE Disease Model.

EBioMedicine 2018 Jan 13;27:258-274. Epub 2017 Dec 13.

Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel 4056, Switzerland. Electronic address:

Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss. The protein HtrA1 is enriched in retinal pigment epithelial (RPE) cells isolated from AMD patients and in drusen deposits. However, it is poorly understood how increased levels of HtrA1 affect the physiological function of the RPE at the intracellular level. Here, we developed hfRPE (human fetal retinal pigment epithelial) cell culture model where cells fully differentiated into a polarized functional monolayer. In this model, we fine-tuned the cellular levels of HtrA1 by targeted overexpression. Our data show that HtrA1 enzymatic activity leads to intracellular degradation of tubulin with a corresponding reduction in the number of microtubules, and consequently to an altered mechanical cell phenotype. HtrA1 overexpression further leads to impaired apical processes and decreased phagocytosis, an essential function for photoreceptor survival. These cellular alterations correlate with the AMD phenotype and thus highlight HtrA1 as an intracellular target for therapeutic interventions towards AMD treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ebiom.2017.12.011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828370PMC
January 2018

HtrA1 activation is driven by an allosteric mechanism of inter-monomer communication.

Sci Rep 2017 11 1;7(1):14804. Epub 2017 Nov 1.

Pharma Research & Early Development (pRED). Roche Innovation Center Basel, Basel, Switzerland.

The human protease family HtrA is responsible for preventing protein misfolding and mislocalization, and a key player in several cellular processes. Among these, HtrA1 is implicated in several cancers, cerebrovascular disease and age-related macular degeneration. Currently, HtrA1 activation is not fully characterized and relevant for drug-targeting this protease. Our work provides a mechanistic step-by-step description of HtrA1 activation and regulation. We report that the HtrA1 trimer is regulated by an allosteric mechanism by which monomers relay the activation signal to each other, in a PDZ-domain independent fashion. Notably, we show that inhibitor binding is precluded if HtrA1 monomers cannot communicate with each other. Our study establishes how HtrA1 trimerization plays a fundamental role in proteolytic activity. Moreover, it offers a structural explanation for HtrA1-defective pathologies as well as mechanistic insights into the degradation of complex extracellular fibrils such as tubulin, amyloid beta and tau that belong to the repertoire of HtrA1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-017-14208-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666011PMC
November 2017

Pharmacological control of platelet-leukocyte interactions by the human anti-P-selectin antibody inclacumab--preclinical and clinical studies.

Thromb Res 2013 May 21;131(5):401-10. Epub 2013 Mar 21.

F. Hoffmann-La Roche, AG, Basel, Switzerland.

Background And Objective: Elevated levels of platelet-leukocyte aggregates (PLAs) have been reported in several cardiovascular diseases and suggested to contribute to disease pathology. Our aim was to characterize the effects of inclacumab, a novel human anti-P-selectin antibody, on the interactions between leukocytes and platelets in preclinical and clinical studies.

Experimental Approaches: Dual-label flow cytometry was used to detect the effect of inclacumab on agonist-induced platelet-leukocyte/platelet-monocyte aggregates in cynomolgus monkeys and humans, following ex vivo and in vivo administration. Platelet-dependent leukocyte activation and leukocyte adhesion to a platelet monolayer were also investigated after ex vivo administration of inclacumab to human blood.

Results: Treatment of cynomolgus monkeys with inclacumab profoundly inhibited thrombin receptor-activating peptide (TRAP) or adenosine diphosphate (ADP)-induced PLAs with an IC50 (<2 μg/mL) similar to the in vitro spiking experiments. Maximal inhibition of PLAs persisted for ≥28 days following single dose of inclacumab. In human blood, inclacumab was about 2-fold more potent in inhibiting TRAP-induced PLAs (IC50: 0.7 μg/mL) compared to monkeys. PLA formation was suppressed independently of the inducing platelet agonist. Inclacumab also inhibited the activation of the leukocyte integrin Mac-1 and leukocyte adhesion to a platelet monolayer under flow conditions. In clinical studies, inclacumab inhibited TRAP-induced PLA formation in a dose-dependent manner following single and multiple dose administration to healthy volunteers. It also reduced elevated circulating PLA levels in patients with peripheral arterial disease.

Conclusion: By inhibiting platelet-leukocyte interactions, demonstrated in multiple preclinical and clinical studies, inclacumab may provide an effective treatment for cardiovascular diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.thromres.2013.02.020DOI Listing
May 2013
-->