Publications by authors named "Corinne Stoffel"

3 Publications

  • Page 1 of 1

Cutaneous and systemic hyperinflammation drives maculopapular drug exanthema in severely ill COVID-19 patients.

Allergy 2021 Jun 22. Epub 2021 Jun 22.

Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.

Background: Coronavirus disease-2019 (COVID-19) has been associated with cutaneous findings, some being the result of drug hypersensitivity reactions such as maculopapular drug rashes (MDR). The aim of this study was to investigate whether COVID-19 may impact the development of the MDR.

Methods: Blood and skin samples from COVID-19 patients (based on a positive nasopharyngeal PCR) suffering from MDR (COVID-MDR), healthy controls, non-COVID-19-related patients with drug rash with eosinophilia and systemic symptoms (DRESS), and MDR were analyzed. We utilized imaging mass cytometry (IMC) to characterize the cellular infiltrate in skin biopsies. Furthermore, RNA sequencing transcriptome of skin biopsy samples and high-throughput multiplexed proteomic profiling of serum were performed.

Results: IMC revealed by clustering analyses a more prominent, phenotypically shifted cytotoxic CD8 T cell population and highly activated monocyte/macrophage (Mo/Mac) clusters in COVID-MDR. The RNA sequencing transcriptome demonstrated a more robust cytotoxic response in COVID-MDR skin. However, severe acute respiratory syndrome coronavirus 2 was not detected in skin biopsies at the time point of MDR diagnosis. Serum proteomic profiling of COVID-MDR patients revealed upregulation of various inflammatory mediators (IL-4, IL-5, IL-6, TNF, and IFN-γ), eosinophil and Mo/Mac -attracting chemokines (MCP-2, MCP-3, MCP-4 and CCL11). Proteomics analyses demonstrated a massive systemic cytokine storm in COVID-MDR compared with the relatively milder cytokine storm observed in DRESS, while MDR did not exhibit such features.

Conclusion: A systemic cytokine storm may promote activation of Mo/Mac and cytotoxic CD8 T cells in severe COVID-19 patients, which in turn may impact the development of MDR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/all.14983DOI Listing
June 2021

A Comparative Study of Real-Time RT-PCR-Based SARS-CoV-2 Detection Methods and Its Application to Human-Derived and Surface Swabbed Material.

J Mol Diagn 2021 07 5;23(7):796-804. Epub 2021 May 5.

Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland. Electronic address:

Real-time RT-PCR remains a gold standard in the detection of various viral diseases. In the coronavirus 2019 pandemic, multiple RT-PCR-based tests were developed to screen for viral infection. As an emergency response to increasing testing demand, we established a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PCR diagnostics platform for which we compared different commercial and in-house RT-PCR protocols. Four commercial, one customized, and one in-house RT-PCR protocols were evaluated with 92 SARS-CoV-2-positive and 92 SARS-CoV-2-negative samples. Furthermore, economical and practical characteristics of these protocols were compared. In addition, a highly sensitive digital droplet PCR (ddPCR) method was developed, and application of RT-PCR and ddPCR methods on SARS-CoV-2 environmental samples was examined. Very low limits of detection (1 or 2 viral copies/μL), high sensitivities (93.6% to 97.8%), and high specificities (98.7% to 100%) for the tested RT-PCR protocols were found. Furthermore, the feasibility of downscaling two of the commercial protocols, which could optimize testing capacity, was demonstrated. Tested commercial and customized RT-PCR detection kits show very good and comparable sensitivity and specificity, and the kits could be further optimized for use on SARS-CoV-2 viral samples derived from human and surface swabbed samples.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmoldx.2021.04.009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8096526PMC
July 2021

Prolonged Unfrozen Storage and Repeated Freeze-Thawing of SARS-CoV-2 Patient Samples Have Minor Effects on SARS-CoV-2 Detectability by RT-PCR.

J Mol Diagn 2021 06 26;23(6):691-697. Epub 2021 Mar 26.

Department of Dermatology, University Hospital Zurich and Medical Faculty, University of Zurich, Zurich, Switzerland. Electronic address:

Reliable transportation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patient samples from a swabbing station to a diagnostics facility is essential for accurate results. Therefore, cooling or freezing the samples is recommended in case of longer transportation times. In this study, SARS-CoV-2 detectability by RT-PCR was assessed after prolonged unfrozen storage or repetitive freeze-thawing of SARS-CoV-2 samples. SARS-CoV-2-positive patient swabs stored in viral transport medium were exposed to different temperatures (4°C, 25°C, and 35°C) and to repetitive freeze-thawing, to assess the effect of storage conditions on RT-PCR detection. SARS-CoV-2 RNA was still reliably detected by RT-PCR after 21 days of storage in viral transport medium, even when the samples had been stored at 35°C. The maximum observed change in cycle threshold value per day was 0.046 (±0.019) at 35°C, and the maximum observed change in cycle threshold value per freeze-thaw cycle per day was 0.197 (±0.06). Compared with storage at 4°C, viral RNA levels deviated little but significantly when stored at 25°C or 35°C, or after repeated freeze-thawing. The results of this study indicate that viral RNA levels are relatively stable at higher temperatures and repetitive freeze-thawing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmoldx.2021.03.003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997259PMC
June 2021