Publications by authors named "Corey T Watson"

50 Publications

The ADC API: A Web API for the Programmatic Query of the AIRR Data Commons.

Front Big Data 2020 17;3:22. Epub 2020 Jun 17.

Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, United States.

The Adaptive Immune Receptor Repertoire (AIRR) Community is a research-driven group that is establishing a clear set of community-accepted data and metadata standards; standards-based reference implementation tools; and policies and practices for infrastructure to support the deposit, curation, storage, and use of high-throughput sequencing data from B-cell and T-cell receptor repertoires (AIRR-seq data). The AIRR Data Commons is a distributed system of data repositories that utilizes a common data model, a common query language, and common interoperability formats for storage, query, and downloading of AIRR-seq data. Here is described the principal technical standards for the AIRR Data Commons consisting of the AIRR Data Model for repertoires and rearrangements, the AIRR Data Commons (ADC) API for programmatic query of data repositories, a reference implementation for ADC API services, and tools for querying and validating data repositories that support the ADC API. AIRR-seq data repositories can become part of the AIRR Data Commons by implementing the data model and API. The AIRR Data Commons allows AIRR-seq data to be reused for novel analyses and empowers researchers to discover new biological insights about the adaptive immune system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fdata.2020.00022DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931935PMC
June 2020

Gut Microbiota Composition Modulates the Magnitude and Quality of Germinal Centers during Plasmodium Infections.

Cell Rep 2020 Dec;33(11):108503

Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA; Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA. Electronic address:

Gut microbiota composition is associated with human and rodent Plasmodium infections, yet the mechanism by which gut microbiota affects the severity of malaria remains unknown. Humoral immunity is critical in mediating the clearance of Plasmodium blood stage infections, prompting the hypothesis that mice with gut microbiota-dependent decreases in parasite burden exhibit better germinal center (GC) responses. In support of this hypothesis, mice with a low parasite burden exhibit increases in GC B cell numbers and parasite-specific antibody titers, as well as better maintenance of GC structures and a more targeted, qualitatively different antibody response. This enhanced humoral immunity affects memory, as mice with a low parasite burden exhibit robust protection against challenge with a heterologous, lethal Plasmodium species. These results demonstrate that gut microbiota composition influences the biology of spleen GCs as well as the titer and repertoire of parasite-specific antibodies, identifying potential approaches to develop optimal treatments for malaria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2020.108503DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7772993PMC
December 2020

A Novel Framework for Characterizing Genomic Haplotype Diversity in the Human Immunoglobulin Heavy Chain Locus.

Front Immunol 2020 23;11:2136. Epub 2020 Sep 23.

Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States.

An incomplete ascertainment of genetic variation within the highly polymorphic immunoglobulin heavy chain locus (IGH) has hindered our ability to define genetic factors that influence antibody-mediated processes. Due to locus complexity, standard high-throughput approaches have failed to accurately and comprehensively capture IGH polymorphism. As a result, the locus has only been fully characterized two times, severely limiting our knowledge of human IGH diversity. Here, we combine targeted long-read sequencing with a novel bioinformatics tool, IGenotyper, to fully characterize IGH variation in a haplotype-specific manner. We apply this approach to eight human samples, including a haploid cell line and two mother-father-child trios, and demonstrate the ability to generate high-quality assemblies (>98% complete and >99% accurate), genotypes, and gene annotations, identifying 2 novel structural variants and 15 novel IGH alleles. We show multiplexing allows for scaling of the approach without impacting data quality, and that our genotype call sets are more accurate than short-read (>35% increase in true positives and >97% decrease in false-positives) and array/imputation-based datasets. This framework establishes a desperately needed foundation for leveraging IG genomic data to study population-level variation in antibody-mediated immunity, critical for bettering our understanding of disease risk, and responses to vaccines and therapeutics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2020.02136DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539625PMC
September 2020

A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection.

J Immunol 2020 08 26;205(4):915-922. Epub 2020 Jun 26.

Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110;

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for millions of infections and hundreds of thousands of deaths globally. There are no widely available licensed therapeutics against SARS-CoV-2, highlighting an urgent need for effective interventions. The virus enters host cells through binding of a receptor-binding domain within its trimeric spike glycoprotein to human angiotensin-converting enzyme 2. In this article, we describe the generation and characterization of a panel of murine mAbs directed against the receptor-binding domain. One mAb, 2B04, neutralized wild-type SARS-CoV-2 in vitro with remarkable potency (half-maximal inhibitory concentration of <2 ng/ml). In a murine model of SARS-CoV-2 infection, 2B04 protected challenged animals from weight loss, reduced lung viral load, and blocked systemic dissemination. Thus, 2B04 is a promising candidate for an effective antiviral that can be used to prevent SARS-CoV-2 infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.2000583DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566074PMC
August 2020

Genotyping and Copy Number Analysis of Immunoglobin Heavy Chain Variable Genes Using Long Reads.

iScience 2020 Mar 4;23(3):100883. Epub 2020 Feb 4.

Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD 20892, USA. Electronic address:

One of the remaining challenges to describing an individual's genetic variation lies in the highly heterogeneous and complex genomic regions that impede the use of classical reference-guided mapping and assembly approaches. Once such region is the Immunoglobulin heavy chain locus (IGH), which is critical for the development of antibodies and the adaptive immune system. We describe ImmunoTyper, the first PacBio-based genotyping and copy number calling tool specifically designed for IGH V genes (IGHV). We demonstrate that ImmunoTyper's multi-stage clustering and combinatorial optimization approach represents the most comprehensive IGHV genotyping approach published to date, through validation using gold-standard IGH reference sequence. This preliminary work establishes the feasibility of fine-grained genotype and copy number analysis using error-prone long reads in complex multi-gene loci and opens the door for in-depth investigation into IGHV heterogeneity using accessible and increasingly common whole-genome sequence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isci.2020.100883DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7044747PMC
March 2020

A Proposed New Nomenclature for the Immunoglobulin Genes of .

Front Immunol 2019 18;10:2961. Epub 2019 Dec 18.

School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.

Mammalian immunoglobulin (IG) genes are found in complex loci that contain hundreds of highly similar pseudogenes, functional genes and repetitive elements, which has made their investigation particularly challenging. High-throughput sequencing has provided new avenues for the investigation of these loci, and has recently been applied to study the IG genes of important inbred mouse strains, revealing unexpected differences between their IG loci. This demonstrated that the structural differences are of such magnitude that they call into question the merits of the current mouse IG gene nomenclatures. Three nomenclatures for the mouse IG heavy chain locus () are presently in use, and they are all positional nomenclatures using the C57BL/6 genome reference sequence as their template. The continued use of these nomenclatures requires that genes of other inbred strains be confidently identified as allelic variants of C57BL/6 genes, but this is clearly impossible. The unusual breeding histories of inbred mouse strains mean that, regardless of the genetics of wild mice, no single ancestral origin for the IG loci exists for laboratory mice. Here we present a general discussion of the challenges this presents for any IG nomenclature. Furthermore, we describe principles that could be followed in the formulation of a solution to these challenges. Finally, we propose a non-positional nomenclature that accords with the guidelines of the International Mouse Nomenclature Committee, and outline strategies that can be adopted to meet the nomenclature challenges if three systems are to give way to a new one.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2019.02961DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930147PMC
November 2020

Dual transcriptomic and epigenomic study of reaction severity in peanut-allergic children.

J Allergy Clin Immunol 2020 04 12;145(4):1219-1230. Epub 2019 Dec 12.

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY. Electronic address:

Background: Unexpected allergic reactions to peanut are the most common cause of fatal food-related anaphylaxis. Mechanisms underlying the variable severity of peanut-allergic reactions remain unclear.

Objectives: We sought to expand mechanistic understanding of reaction severity in peanut allergy.

Methods: We performed an integrated transcriptomic and epigenomic study of peanut-allergic children as they reacted in vivo during double-blind, placebo-controlled peanut challenges. We integrated whole-blood transcriptome and CD4 T-cell epigenome profiles to identify molecular signatures of reaction severity (ie, how severely a peanut-allergic child reacts when exposed to peanut). A threshold-weighted reaction severity score was calculated for each subject based on symptoms experienced during peanut challenge and the eliciting dose. Through linear mixed effects modeling, network construction, and causal mediation analysis, we identified genes, CpGs, and their interactions that mediate reaction severity. Findings were replicated in an independent cohort.

Results: We identified 318 genes with changes in expression during the course of reaction associated with reaction severity, and 203 CpG sites with differential DNA methylation associated with reaction severity. After replicating these findings in an independent cohort, we constructed interaction networks with the identified peanut severity genes and CpGs. These analyses and leukocyte deconvolution highlighted neutrophil-mediated immunity. We identified NFKBIA and ARG1 as hubs in the networks and 3 groups of interacting key node CpGs and peanut severity genes encompassing immune response, chemotaxis, and regulation of macroautophagy. In addition, we found that gene expression of PHACTR1 and ZNF121 causally mediates the association between methylation at corresponding CpGs and reaction severity, suggesting that methylation may serve as an anchor upon which gene expression modulates reaction severity.

Conclusions: Our findings enhance current mechanistic understanding of the genetic and epigenetic architecture of reaction severity in peanut allergy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2019.10.040DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192362PMC
April 2020

VDJbase: an adaptive immune receptor genotype and haplotype database.

Nucleic Acids Res 2020 01;48(D1):D1051-D1056

Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel.

VDJbase is a publicly available database that offers easy searching of data describing the complete sets of gene sequences (genotypes and haplotypes) inferred from adaptive immune receptor repertoire sequencing datasets. VDJbase is designed to act as a resource that will allow the scientific community to explore the genetic variability of the immunoglobulin (Ig) and T cell receptor (TR) gene loci. It can also assist in the investigation of Ig- and TR-related genetic predispositions to diseases. Our database includes web-based query and online tools to assist in visualization and analysis of the genotype and haplotype data. It enables users to detect those alleles and genes that are significantly over-represented in a particular population, in terms of genotype, haplotype and gene expression. The database website can be freely accessed at https://www.vdjbase.org/, and no login is required. The data and code use creative common licenses and are freely downloadable from https://bitbucket.org/account/user/yaarilab/projects/GPHP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/nar/gkz872DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943044PMC
January 2020

OGRDB: a reference database of inferred immune receptor genes.

Nucleic Acids Res 2020 01;48(D1):D964-D970

Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK.

High-throughput sequencing of the adaptive immune receptor repertoire (AIRR-seq) is providing unprecedented insights into the immune response to disease and into the development of immune disorders. The accurate interpretation of AIRR-seq data depends on the existence of comprehensive germline gene reference sets. Current sets are known to be incomplete and unrepresentative of the degree of polymorphism and diversity in human and animal populations. A key issue is the complexity of the genomic regions in which they lie, which, because of the presence of multiple repeats, insertions and deletions, have not proved tractable with short-read whole genome sequencing. Recently, tools and methods for inferring such gene sequences from AIRR-seq datasets have become available, and a community approach has been developed for the expert review and publication of such inferences. Here, we present OGRDB, the Open Germline Receptor Database (https://ogrdb.airr-community.org), a public resource for the submission, review and publication of previously unknown receptor germline sequences together with supporting evidence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/nar/gkz822DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943078PMC
January 2020

A comparison of immunoglobulin IGHV, IGHD and IGHJ genes in wild-derived and classical inbred mouse strains.

Immunol Cell Biol 2019 11 6;97(10):888-901. Epub 2019 Oct 6.

School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.

The genomes of classical inbred mouse strains include genes derived from all three major subspecies of the house mouse, Mus musculus. We recently posited that genetic diversity in the immunoglobulin heavy chain (IGH) gene loci of C57BL/6 and BALB/c mice reflects differences in subspecies origin. To investigate this hypothesis, we conducted high-throughput sequencing of IGH gene rearrangements to document IGH variable (IGHV), joining (IGHJ) and diversity (IGHD) genes in four inbred wild-derived mouse strains (CAST/EiJ, LEWES/EiJ, MSM/MsJ and PWD/PhJ) and a single disease model strain (NOD/ShiLtJ), collectively representing genetic backgrounds of several major mouse subspecies. A total of 341 germline IGHV sequences were inferred in the wild-derived strains, including 247 not curated in the international ImMunoGeneTics information system. By contrast, 83/84 inferred NOD IGHV genes had previously been observed in C57BL/6 mice. Variability among the strains examined was observed for only a single IGHJ gene, involving a description of a novel allele. By contrast, unexpected variation was found in the IGHD gene loci, with four previously unreported IGHD gene sequences being documented. Very few IGHV sequences of C57BL/6 and BALB/c mice were shared with strains representing major subspecies, suggesting that their IGH loci may be complex mosaics of genes of disparate origins. This suggests a similar level of diversity is likely present in the IGH loci of other classical inbred strains. This must now be documented if we are to properly understand interstrain variation in models of antibody-mediated disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/imcb.12288DOI Listing
November 2019

Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses via Modulation of Immunodominance.

Cell 2019 05 9;177(5):1153-1171.e28. Epub 2019 May 9.

Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA. Electronic address:

Conventional immunization strategies will likely be insufficient for the development of a broadly neutralizing antibody (bnAb) vaccine for HIV or other difficult pathogens because of the immunological hurdles posed, including B cell immunodominance and germinal center (GC) quantity and quality. We found that two independent methods of slow delivery immunization of rhesus monkeys (RMs) resulted in more robust T follicular helper (T) cell responses and GC B cells with improved Env-binding, tracked by longitudinal fine needle aspirates. Improved GCs correlated with the development of >20-fold higher titers of autologous nAbs. Using a new RM genomic immunoglobulin locus reference, we identified differential IgV gene use between immunization modalities. Ab mapping demonstrated targeting of immunodominant non-neutralizing epitopes by conventional bolus-immunized animals, whereas slow delivery-immunized animals targeted a more diverse set of epitopes. Thus, alternative immunization strategies can enhance nAb development by altering GCs and modulating the immunodominance of non-neutralizing epitopes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2019.04.012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6619430PMC
May 2019

Body Mass Index in Multiple Sclerosis modulates ceramide-induced DNA methylation and disease course.

EBioMedicine 2019 May 10;43:392-410. Epub 2019 Apr 10.

Department of Neuroscience, Icahn School of Medicine at Mount Sinai, NY, New York, United States of America; Advanced Science Research Center at The Graduate Center of The City University of New York and Inter-Institutional Center for Glial Biology at Icahn School of Medicine New York, New York, United States of America. Electronic address:

Background: Multiple Sclerosis (MS) results from genetic predisposition and environmental variables, including elevated Body Mass Index (BMI) in early life. This study addresses the effect of BMI on the epigenome of monocytes and disease course in MS.

Methods: Fifty-four therapy-naive Relapsing Remitting (RR) MS patients with high and normal BMI received clinical and MRI evaluation. Blood samples were immunophenotyped, and processed for unbiased plasma lipidomic profiling and genome-wide DNA methylation analysis of circulating monocytes. The main findings at baseline were validated in an independent cohort of 91 therapy-naïve RRMS patients. Disease course was evaluated by a two-year longitudinal follow up and mechanistic hypotheses tested in human cell cultures and in animal models of MS.

Findings: Higher monocytic counts and plasma ceramides, and hypermethylation of genes involved in negative regulation of cell proliferation were detected in the high BMI group of MS patients compared to normal BMI. Ceramide treatment of monocytic cell cultures increased proliferation in a dose-dependent manner and was prevented by DNA methylation inhibitors. The high BMI group of MS patients showed a negative correlation between monocytic counts and brain volume. Those subjects at a two-year follow-up showed increased T1 lesion load, increased disease activity, and worsened clinical disability. Lastly, the relationship between body weight, monocytic infiltration, DNA methylation and disease course was validated in mouse models of MS.

Interpretation: High BMI negatively impacts disease course in Multiple Sclerosis by modulating monocyte cell number through ceramide-induced DNA methylation of anti-proliferative genes. FUND: This work was supported by funds from the Friedman Brain Institute, NIH, and Multiple Sclerosis Society.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ebiom.2019.03.087DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6557766PMC
May 2019

Inferred Allelic Variants of Immunoglobulin Receptor Genes: A System for Their Evaluation, Documentation, and Naming.

Front Immunol 2019 18;10:435. Epub 2019 Mar 18.

School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.

Immunoglobulins or antibodies are the main effector molecules of the B-cell lineage and are encoded by hundreds of variable (V), diversity (D), and joining (J) germline genes, which recombine to generate enormous IG diversity. Recently, high-throughput adaptive immune receptor repertoire sequencing (AIRR-seq) of recombined V-(D)-J genes has offered unprecedented insights into the dynamics of IG repertoires in health and disease. Faithful biological interpretation of AIRR-seq studies depends upon the annotation of raw AIRR-seq data, using reference germline gene databases to identify the germline genes within each rearrangement. Existing reference databases are incomplete, as shown by recent AIRR-seq studies that have inferred the existence of many previously unreported polymorphisms. Completing the documentation of genetic variation in germline gene databases is therefore of crucial importance. Lymphocyte receptor genes and alleles are currently assigned by the Immunoglobulins, T cell Receptors and Major Histocompatibility Nomenclature Subcommittee of the International Union of Immunological Societies (IUIS) and managed in IMGT, the international ImMunoGeneTics information system (IMGT). In 2017, the IMGT Group reached agreement with a group of AIRR-seq researchers on the principles of a streamlined process for identifying and naming inferred allelic sequences, for their incorporation into IMGT. These researchers represented the AIRR Community, a network of over 300 researchers whose objective is to promote all aspects of immunoglobulin and T-cell receptor repertoire studies, including the standardization of experimental and computational aspects of AIRR-seq data generation and analysis. The Inferred Allele Review Committee (IARC) was established by the AIRR Community to devise policies, criteria, and procedures to perform this function. Formalized evaluations of novel inferred sequences have now begun and submissions are invited via a new dedicated portal (https://ogrdb.airr-community.org). Here, we summarize recommendations developed by the IARC-focusing, to begin with, on human IGHV genes-with the goal of facilitating the acceptance of inferred allelic variants of germline IGHV genes. We believe that this initiative will improve the quality of AIRR-seq studies by facilitating the description of human IG germline gene variation, and that in time, it will expand to the documentation of TR and IG genes in many vertebrate species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2019.00435DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431624PMC
September 2020

Identification of Subject-Specific Immunoglobulin Alleles From Expressed Repertoire Sequencing Data.

Front Immunol 2019 13;10:129. Epub 2019 Feb 13.

Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States.

The adaptive immune receptor repertoire (AIRR) contains information on an individuals' immune past, present and potential in the form of the evolving sequences that encode the B cell receptor (BCR) repertoire. AIRR sequencing (AIRR-seq) studies rely on databases of known BCR germline variable (V), diversity (D), and joining (J) genes to detect somatic mutations in AIRR-seq data via comparison to the best-aligning database alleles. However, it has been shown that these databases are far from complete, leading to systematic misidentification of mutated positions in subsets of sample sequences. We previously presented TIgGER, a computational method to identify subject-specific V gene genotypes, including the presence of novel V gene alleles, directly from AIRR-seq data. However, the original algorithm was unable to detect alleles that differed by more than 5 single nucleotide polymorphisms (SNPs) from a database allele. Here we present and apply an improved version of the TIgGER algorithm which can detect alleles that differ by any number of SNPs from the nearest database allele, and can construct subject-specific genotypes with minimal prior information. TIgGER predictions are validated both computationally (using a leave-one-out strategy) and experimentally (using genomic sequencing), resulting in the addition of three new immunoglobulin heavy chain V (IGHV) gene alleles to the IMGT repertoire. Finally, we develop a Bayesian strategy to provide a confidence estimate associated with genotype calls. All together, these methods allow for much higher accuracy in germline allele assignment, an essential step in AIRR-seq studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2019.00129DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381938PMC
January 2020

Proteomic Analysis Reveals Novel Mechanisms by Which Polychlorinated Biphenyls Compromise the Liver Promoting Diet-Induced Steatohepatitis.

J Proteome Res 2019 04 15;18(4):1582-1594. Epub 2019 Mar 15.

The Robley Rex Veterans Affairs Medical Center , Louisville , Kentucky 40206 , United States.

Environmental pollution contributes to fatty liver disease pathogenesis. Polychlorinated biphenyl (PCB) exposures have been associated with liver enzyme elevation and suspected steatohepatitis in cohort studies. Male mice treated with the commercial PCB mixture, Aroclor 1260 (20 mg/kg), and fed high fat diet (HFD) for 12 weeks developed steatohepatitis. Receptor-based modes of action including inhibition of the epidermal growth factor (EGF) receptor were previously proposed, but other mechanisms likely exist. Objectives were to identify and validate the pathways, transcription factors, and mechanisms responsible for the steatohepatitis associated with PCB and HFD coexposures. Comparative proteomics analysis was performed in archived mouse liver samples from the aforementioned chronic exposure study. Pathway and transcription factor analysis (TFA) was performed, and selected results were validated. Liver proteomics detected 1103 unique proteins. Aroclor 1260 upregulated 154 and downregulated 93 of these. Aroclor 1260 + HFD coexposures affected 55 pathways including glutathione metabolism, intermediary metabolism, and cytoskeletal remodeling. TFA of Aroclor 1260 treatment demonstrated alterations in the function of 42 transcription factors including downregulation of NRF2 and key nuclear receptors previously demonstrated to protect against steatohepatitis (e.g., HNF4α, FXR, PPARα/δ/γ, etc.). Validation studies demonstrated that Aroclor 1260 significantly reduced HNF4α protein levels, while Aroclor 1260 + HFD reduced expression of the HNF4α target gene, albumin, in vivo. Aroclor 1260 attenuated EGF-dependent HNF4α phosphorylation and target gene activation in vitro. Aroclor 1260 reduced levels of NRF2, its target genes, and glutathione in vivo. Aroclor 1260 attenuated EGF-dependent NRF2 upregulation, in vitro. Aroclor 1260 indirectly activated hepatic stellate cells in vitro via induction of hepatocyte-derived TGFβ. PCB exposures adversely impacted transcription factors regulating liver protection, function, and fibrosis. PCBs, thus, compromised the liver by reducing its protective responses against nutritional stress to promote diet-induced steatohepatitis. The identified mechanisms by which environmental pollutants influence fatty liver disease pathogenesis require confirmation in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jproteome.8b00886DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059562PMC
April 2019

Fumarates target the metabolic-epigenetic interplay of brain-homing T cells in multiple sclerosis.

Brain 2019 03;142(3):647-661

Neuroscience, Advanced Science Research Center at The Graduate Center of the City University of New York, New York, NY, USA.

Cell-permeable formulations of metabolites, such as fumaric acid esters, have been used as highly effective immunomodulators in patients with multiple sclerosis and yet their mechanism of action remains elusive. Since fumaric acid esters are metabolites, and cell metabolism is highly intertwined with the epigenetic regulation of gene expression, we investigated whether this metabolic-epigenetic interplay could be leveraged for therapeutic purposes. To this end we recruited 47 treatment-naïve and 35 fumaric acid ester-treated patients with multiple sclerosis, as well as 16 glatiramer acetate-treated patients as a non-metabolite treatment control. Here we identify a significant immunomodulatory effect of fumaric acid esters on the expression of the brain-homing chemokine receptor CCR6 in CD4 and CD8 T cells of patients with multiple sclerosis, which include T helper-17 and T cytotoxic-17 cells. We report differences in DNA methylation of CD4 T cells isolated from untreated and treated patients with multiple sclerosis, using the Illumina EPIC 850K BeadChip. We first demonstrate that Krebs cycle intermediates, such as fumaric acid esters, have a significantly higher impact on epigenome-wide DNA methylation changes in CD4 T cells compared to amino-acid polymers such as glatiramer acetate. We then define a fumaric acid ester treatment-specific hypermethylation effect on microRNA MIR-21, which is critical for the differentiation of T helper-17 cells. This hypermethylation effect was attributed to the subpopulation of T helper-17 cells using a decomposition analysis and was further validated in an independent prospective cohort of seven patients before and after treatment with fumaric acid esters. In vitro treatment of CD4 and CD8 T cells with fumaric acid esters supported a direct and dose-dependent effect on DNA methylation at the MIR-21 promoter. Finally, the upregulation of miR-21 transcripts and CCR6 expression was inhibited if CD4 or CD8 T cells stimulated under T helper-17 or T cytotoxic-17 polarizing conditions were treated with fumaric acid esters in vitro. These data collectively define a direct link between fumaric acid ester treatment and hypermethylation of the MIR-21 locus in both CD4 and CD8 T cells and suggest that the immunomodulatory effect of fumaric acid esters in multiple sclerosis is at least in part due to the epigenetic regulation of the brain-homing CCR6+ CD4 and CD8 T cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awy344DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821213PMC
March 2019

Immunoglobulin Light Chain Gene Rearrangements, Receptor Editing and the Development of a Self-Tolerant Antibody Repertoire.

Front Immunol 2018 8;9:2249. Epub 2018 Oct 8.

Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States.

Discussion of the antibody repertoire usually emphasizes diversity, but a conspicuous feature of the light chain repertoire is its lack of diversity. The diversity of reported allelic variants of germline light chain genes is also limited, even in well-studied species. In this review, the implications of this lack of diversity are considered. We explore germline and rearranged light chain genes in a variety of species, with a particular focus on human and mouse genes. The importance of the number, organization and orientation of the genes for the control of repertoire development is discussed, and we consider how primary rearrangements and receptor editing together shape the expressed light chain repertoire. The resulting repertoire is dominated by just a handful of IGKV and IGLV genes. It has been hypothesized that an important function of the light chain is to guard against self-reactivity, and the role of secondary rearrangements in this process could explain the genomic organization of the light chain genes. It could also explain why the light chain repertoire is so limited. Heavy and light chain genes may have co-evolved to ensure that suitable light chain partners are usually available for each heavy chain that forms early in B cell development. We suggest that the co-evolved loci of the house mouse often became separated during the inbreeding of laboratory mice, resulting in new pairings of loci that are derived from different sub-species of the house mouse. A resulting vulnerability to self-reactivity could explain at least some mouse models of autoimmune disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2018.02249DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6186787PMC
September 2019

Identification of rare de novo epigenetic variations in congenital disorders.

Nat Commun 2018 05 25;9(1):2064. Epub 2018 May 25.

The Mindich Child Health & Development Institute and the Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Certain human traits such as neurodevelopmental disorders (NDs) and congenital anomalies (CAs) are believed to be primarily genetic in origin. However, even after whole-genome sequencing (WGS), a substantial fraction of such disorders remain unexplained. We hypothesize that some cases of ND-CA are caused by aberrant DNA methylation leading to dysregulated genome function. Comparing DNA methylation profiles from 489 individuals with ND-CAs against 1534 controls, we identify epivariations as a frequent occurrence in the human genome. De novo epivariations are significantly enriched in cases, while RNAseq analysis shows that epivariations often have an impact on gene expression comparable to loss-of-function mutations. Additionally, we detect and replicate an enrichment of rare sequence mutations overlapping CTCF binding sites close to epivariations, providing a rationale for interpreting non-coding variation. We propose that epivariations contribute to the pathogenesis of some patients with unexplained ND-CAs, and as such likely have diagnostic relevance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-04540-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5970273PMC
May 2018

Reproducibility and Reuse of Adaptive Immune Receptor Repertoire Data.

Front Immunol 2017 1;8:1418. Epub 2017 Nov 1.

Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.

High-throughput sequencing (HTS) of immunoglobulin (B-cell receptor, antibody) and T-cell receptor repertoires has increased dramatically since the technique was introduced in 2009 (1-3). This experimental approach explores the maturation of the adaptive immune system and its response to antigens, pathogens, and disease conditions in exquisite detail. It holds significant promise for diagnostic and therapy-guiding applications. New technology often spreads rapidly, sometimes more rapidly than the understanding of how to make the products of that technology reliable, reproducible, or usable by others. As complex technologies have developed, scientific communities have come together to adopt common standards, protocols, and policies for generating and sharing data sets, such as the MIAME protocols developed for microarray experiments. The Adaptive Immune Receptor Repertoire (AIRR) Community formed in 2015 to address similar issues for HTS data of immune repertoires. The purpose of this perspective is to provide an overview of the AIRR Community's founding principles and present the progress that the AIRR Community has made in developing standards of practice and data sharing protocols. Finally, and most important, we invite all interested parties to join this effort to facilitate sharing and use of these powerful data sets (join@airr-community.org).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2017.01418DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671925PMC
November 2017

Genomic Environment Impacts Color Vision Evolution in a Family with Visually Based Sexual Selection.

Genome Biol Evol 2017 Nov;9(11):3100-3107

Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.

Many models of evolution by sexual selection predict a coevolution of sensory systems and mate preferences, but the genomic architecture (number and arrangement of contributing loci) underlying these characters could constrain this coevolution. Here, we examine how the genomic organization and evolution of the opsin genes (responsible for tuning color vision) can influence the evolutionary trajectory of sexually selected traits across 15 species in the family Poeciliidae, which includes classic systems for studies of color-mediated sexual selection such as guppies, swordtails, and mollies. Although male coloration patterns and the importance of this coloration in female mate choice vary widely within and among genera, sequencing revealed low variability at amino acid sites that tune Long Wavelength-Sensitive (LWS) opsins in this speciose family. Although most opsin genes in these species appear to have evolved along traditional mutation-selection dynamics, we identified high rates of gene conversion between two of the LWS loci (LWS-1 and LWS-3), likely due to the inverted tandem repeat nature of these genes. Yet members of the subgenus Lebistes appear to resist LWS gene conversion. The LWS opsins are responsible for detecting and discriminating red and orange coloration-a key sexually selected trait in members of the subgenus Lebistes. Taken together these results suggest selection is acting against the homogenizing effects of gene conversion to maintain LWS-1/LWS-3 differences within this subgenus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/gbe/evx228DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5714168PMC
November 2017

The Individual and Population Genetics of Antibody Immunity.

Trends Immunol 2017 07 20;38(7):459-470. Epub 2017 May 20.

Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA. Electronic address:

Antibodies (Abs) produced by immunoglobulin (IG) genes are the most diverse proteins expressed in humans. While part of this diversity is generated by recombination during B-cell development and mutations during affinity maturation, the germ-line IG loci are also diverse across human populations and ethnicities. Recently, proof-of-concept studies have demonstrated genotype-phenotype correlations between specific IG germ-line variants and the quality of Ab responses during vaccination and disease. However, the functional consequences of IG genetic variation in Ab function and immunological outcomes remain underexplored. In this opinion article, we outline interconnections between IG genomic diversity and Ab-expressed repertoires and structure. We further propose a strategy for integrating IG genotyping with functional Ab profiling data as a means to better predict and optimize humoral responses in genetically diverse human populations, with immediate implications for personalized medicine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.it.2017.04.003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5656258PMC
July 2017

Using High-Throughput Sequencing to Characterize the Development of the Antibody Repertoire During Infections: A Case Study of HIV-1.

Adv Exp Med Biol 2017 ;1053:245-263

Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA.

High throughput sequencing (HTS) approaches have only recently been applied to describing the antibody/B-cell repertoire in fine detail, but these data sets have already become critical to the design of vaccines and therapeutics, and monitoring of cancer immunotherapy. As a case study, we describe the potential and present limitations of HTS studies of the Ab repertoire during infection with HIV-1. Most of the present studies restrict their analyses to lineages of specific bnAbs. We discuss future initiatives to expand this type of analysis to more complete repertoires and to improve comparing and sharing of these Ab repertoire data across studies and institutions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-72077-7_12DOI Listing
August 2018

DNA Methylation Profiling of Uniparental Disomy Subjects Provides a Map of Parental Epigenetic Bias in the Human Genome.

Am J Hum Genet 2016 09 25;99(3):555-566. Epub 2016 Aug 25.

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Electronic address:

Genomic imprinting is a mechanism in which gene expression varies depending on parental origin. Imprinting occurs through differential epigenetic marks on the two parental alleles, with most imprinted loci marked by the presence of differentially methylated regions (DMRs). To identify sites of parental epigenetic bias, here we have profiled DNA methylation patterns in a cohort of 57 individuals with uniparental disomy (UPD) for 19 different chromosomes, defining imprinted DMRs as sites where the maternal and paternal methylation levels diverge significantly from the biparental mean. Using this approach we identified 77 DMRs, including nearly all those described in previous studies, in addition to 34 DMRs not previously reported. These include a DMR at TUBGCP5 within the recurrent 15q11.2 microdeletion region, suggesting potential parent-of-origin effects associated with this genomic disorder. We also observed a modest parental bias in DNA methylation levels at every CpG analyzed across ∼1.9 Mb of the 15q11-q13 Prader-Willi/Angelman syndrome region, demonstrating that the influence of imprinting is not limited to individual regulatory elements such as CpG islands, but can extend across entire chromosomal domains. Using RNA-seq data, we detected signatures consistent with imprinted expression associated with nine novel DMRs. Finally, using a population sample of 4,004 blood methylomes, we define patterns of epigenetic variation at DMRs, identifying rare individuals with global gain or loss of methylation across multiple imprinted loci. Our data provide a detailed map of parental epigenetic bias in the human genome, providing insights into potential parent-of-origin effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2016.06.032DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5011056PMC
September 2016

IGHV1-69 polymorphism modulates anti-influenza antibody repertoires, correlates with IGHV utilization shifts and varies by ethnicity.

Sci Rep 2016 Feb 16;6:20842. Epub 2016 Feb 16.

Department of Cancer Immunology &AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02215, USA.

IGHV polymorphism provides a rich source of humoral immune system diversity. One important example is the IGHV1-69 germline gene where the biased use of alleles that encode the critical CDR-H2 Phe54 (F-alleles) to make broadly neutralizing antibodies (HV1-69-sBnAb) to the influenza A hemagglutinin stem domain has been clearly established. However, whether IGHV1-69 polymorphism can also modulate B cell function and Ab repertoire expression through promoter and copy number (CN) variations has not been reported, nor has whether IGHV1-69 allelic distribution is impacted by ethnicity. Here we studied a cohort of NIH H5N1 vaccinees and demonstrate for the first time the influence of IGHV1-69 polymorphism on V-segment usage, somatic hypermutation and B cell expansion that elucidates the dominance of F-alleles in HV1-69-sBnAbs. We provide evidence that Phe54/Leu54 (F/L) polymorphism correlates with shifted repertoire usage of other IGHV germline genes. In addition, we analyzed ethnically diverse individuals within the 1000 genomes project and discovered marked variations in F- and L- genotypes and CN among the various ethnic groups that may impact HV1-69-sBnAb responses. These results have immediate implications for understanding HV1-69-sBnAb responses at the individual and population level and for the design and implementation of "universal" influenza vaccine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep20842DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754645PMC
February 2016

Genome-wide DNA methylation profiling in the superior temporal gyrus reveals epigenetic signatures associated with Alzheimer's disease.

Genome Med 2016 Jan 19;8(1). Epub 2016 Jan 19.

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Background: Alzheimer's disease affects ~13% of people in the United States 65 years and older, making it the most common neurodegenerative disorder. Recent work has identified roles for environmental, genetic, and epigenetic factors in Alzheimer's disease risk.

Methods: We performed a genome-wide screen of DNA methylation using the Illumina Infinium HumanMethylation450 platform on bulk tissue samples from the superior temporal gyrus of patients with Alzheimer's disease and non-demented controls. We paired a sliding window approach with multivariate linear regression to characterize Alzheimer's disease-associated differentially methylated regions (DMRs).

Results: We identified 479 DMRs exhibiting a strong bias for hypermethylated changes, a subset of which were independently associated with aging. DMR intervals overlapped 475 RefSeq genes enriched for gene ontology categories with relevant roles in neuron function and development, as well as cellular metabolism, and included genes reported in Alzheimer's disease genome-wide and epigenome-wide association studies. DMRs were enriched for brain-specific histone signatures and for binding motifs of transcription factors with roles in the brain and Alzheimer's disease pathology. Notably, hypermethylated DMRs preferentially overlapped poised promoter regions, marked by H3K27me3 and H3K4me3, previously shown to co-localize with aging-associated hypermethylation. Finally, the integration of DMR-associated single nucleotide polymorphisms with Alzheimer's disease genome-wide association study risk loci and brain expression quantitative trait loci highlights multiple potential DMRs of interest for further functional analysis.

Conclusion: We have characterized changes in DNA methylation in the superior temporal gyrus of patients with Alzheimer's disease, highlighting novel loci that facilitate better characterization of pathways and mechanisms underlying Alzheimer's disease pathogenesis, and improve our understanding of epigenetic signatures that may contribute to the development of disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13073-015-0258-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719699PMC
January 2016