Publications by authors named "Connor T King"

4 Publications

  • Page 1 of 1

Evaluation of Extracellular Matrix Composition to Improve Breast Cancer Modeling.

Tissue Eng Part A 2021 04;27(7-8):500-511

Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA.

The development of resistance to therapy is a significant obstacle to effective therapeutic regimens. Evaluating the effects of oncology drugs in the laboratory setting is limited by the lack of translational models that accurately recapitulate cell-microenvironment interactions present in tumors. Acquisition of resistance to therapy is facilitated, in part, by the composition of the tumor extracellular matrix (ECM), with the primary current model using collagen I (COL I). Here we seek to identify the prevalence of COL I-enhanced expression in the triple-negative breast cancer (TNBC) subtype. Furthermore, we identify if methods of response to therapy are altered depending on matrix composition. We demonstrated that collagen content varies in patient tumor samples across subtypes, with COL I expression dramatically increased in typically less aggressive estrogen receptor (ER)-positive(ER)/progesterone receptor (PGR)-positive (PGR) cancers irrespective of patient age or race. These findings are of significance considering how frequently COL I is implicated in tumor progression. analyses of ER and ER-negative (ER) cell lines were used to determine the effects of ECM content (collagen I, collagen IV, fibronectin, and laminin) on proliferation, cellular phenotype, and survival. Neither ER nor ER cells demonstrated significant increases in proliferation when cultured on these ECM substrates. ER cells cultured on these substrates were sensitized to both chemotherapy and targeted therapy. In addition, MDA-MB-231 cells expressed different morphologies, binding affinities, and stiffness across these substrates. We also demonstrated that ECM composition significantly alters transcription of senescence-associated pathways across ER and ER cell lines. Together, these results suggest that complex matrix composites should be incorporated into tumor models, especially for the drug-resistant TNBC subtype. Impact statement The importance of tumor extracellular matrix (ECM) in disease progression is often inadequately represented in models of breast cancer that rely heavily on collagen I and Matrigel. Through immunohistochemistry analysis of patient breast tumors, we show a wide variation in collagen content based on subtype, specifically a repression of fibril collagens in the receptor negative subtype, irrespective of age and race. We also demonstrated that tumor ECM composition alters cellular elasticity and oncogenic pathway activation demonstrating that physiologically relevant three-dimensional models of breast cancer should include an ECM that is subtype specific.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEA.2020.0364DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349725PMC
April 2021

ERK5 Is Required for Tumor Growth and Maintenance Through Regulation of the Extracellular Matrix in Triple Negative Breast Cancer.

Front Oncol 2020 3;10:1164. Epub 2020 Aug 3.

Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States.

Conventional mitogen-activated protein kinase (MAPK) family members regulate diverse cellular processes involved in tumor initiation and progression, yet the role of ERK5 in cancer biology is not fully understood. Triple-negative breast cancer (TNBC) presents a clinical challenge due to the aggressive nature of the disease and a lack of targeted therapies. ERK5 signaling contributes to drug resistance and metastatic progression through distinct mechanisms, including activation of epithelial-to-mesenchymal transition (EMT). More recently a role for ERK5 in regulation of the extracellular matrix (ECM) has been proposed, and here we investigated the necessity of ERK5 in TNBC tumor formation. Depletion of ERK5 expression using the CRISPR/Cas9 system in MDA-MB-231 and Hs-578T cells resulted in loss of mesenchymal features, as observed through gene expression profile and cell morphology, and suppressed TNBC cell migration. xenograft experiments revealed ERK5 knockout disrupted tumor growth kinetics, which was restored using high concentration Matrigel™ and ERK5-ko reduced expression of the angiogenesis marker CD31. These findings implicated a role for ERK5 in the extracellular matrix (ECM) and matrix integrity. RNA-sequencing analyses demonstrated downregulation of matrix-associated genes, integrins, and pro-angiogenic factors in ERK5-ko cells. Tissue decellularization combined with cryo-SEM and interrogation of biomechanical properties revealed that ERK5-ko resulted in loss of key ECM fiber alignment and mechanosensing capabilities in breast cancer xenografts compared to parental wild-type cells. In this study, we identified a novel role for ERK5 in tumor growth kinetics through modulation of the ECM and angiogenesis axis in breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2020.01164DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416559PMC
August 2020

Engineering Breast Cancer Microenvironments and 3D Bioprinting.

Front Bioeng Biotechnol 2018 24;6:66. Epub 2018 May 24.

Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States.

The extracellular matrix (ECM) is a critical cue to direct tumorigenesis and metastasis. Although two-dimensional (2D) culture models have been widely employed to understand breast cancer microenvironments over the past several decades, the 2D models still exhibit limited success. Overwhelming evidence supports that three dimensional (3D), physiologically relevant culture models are required to better understand cancer progression and develop more effective treatment. Such platforms should include cancer-specific architectures, relevant physicochemical signals, stromal-cancer cell interactions, immune components, vascular components, and cell-ECM interactions found in patient tumors. This review briefly summarizes how cancer microenvironments (stromal component, cell-ECM interactions, and molecular modulators) are defined and what emerging technologies (perfusable scaffold, tumor stiffness, supporting cells within tumors and complex patterning) can be utilized to better mimic native-like breast cancer microenvironments. Furthermore, this review emphasizes biophysical properties that differ between primary tumor ECM and tissue sites of metastatic lesions with a focus on matrix modulation of cancer stem cells, providing a rationale for investigation of underexplored ECM proteins that could alter patient prognosis. To engineer breast cancer microenvironments, we categorized technologies into two groups: (1) biochemical factors modulating breast cancer cell-ECM interactions and (2) 3D bioprinting methods and its applications to model breast cancer microenvironments. Biochemical factors include matrix-associated proteins, soluble factors, ECMs, and synthetic biomaterials. For the application of 3D bioprinting, we discuss the transition of 2D patterning to 3D scaffolding with various bioprinting technologies to implement biophysical cues to model breast cancer microenvironments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fbioe.2018.00066DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978274PMC
May 2018

In vitro evaluation of thermal frontally polymerized thiol-ene composites as bone augments.

J Biomed Mater Res B Appl Biomater 2016 08 9;104(6):1152-60. Epub 2015 Jun 9.

Department of Biological and Agricultural Engineering, Louisiana State University and LSU AgCenter, Baton Rouge, Louisiana, 70803.

Because of the large number of total knee replacement (TKR) surgeries conducted per year, and with projections of increased demand to almost a million primary TKR surgeries per year by 2030 in the United States alone, there is a need to discover more efficient working materials as alternatives to current bone cements. There is a need for surgeons and hospitals to become more efficient and better control over the operative environment. One area of inefficiency is the cement steps during TKR. Currently the surgeon has very little control over cement polymerization. This leads to an increase in time, waste, and procedural inefficiencies. There is a clear need to create an extended working time, moldable, osteoconductive, and osteoinductive bone augment as a substitution for the current clinically used bone cement where the surgeon has better control over the polymerization process. This study explored several compositions of pentaerythritol-co-trimethylolpropane tris-(3-mercaptopropionate) hydroxyapatite composite materials prepared via benzoyl peroxide-initiated thermal frontal polymerization. The 4:1 acrylate to thiol ratio containing augment material shows promise with a maximal propagation temperature of 160°C ± 10°C, with mechanical strength of 3.65 MPa, and 111% cytocompatibility, relative to the positive control. This frontally polymerized material may have application as an augment with controlled polymerization supporting cemented implants. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1152-1160, 2016.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.33466DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021313PMC
August 2016
-->