Publications by authors named "Congyang Liu"

4 Publications

  • Page 1 of 1

Interfacial biodegradation of phenanthrene in bacteria-carboxymethyl cellulose-stabilized Pickering emulsions.

Appl Microbiol Biotechnol 2022 May 10;106(9-10):3829-3836. Epub 2022 May 10.

Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China.

The limited bioavailability of PAHs in non-aqueous phase liquid (NAPL) limits their degradation. The biodegradation of phenanthrene in n-tetradecane by hydrophilic bacterium Moraxella sp. CFP312 was studied with the assistance of two polymers, chitosan and carboxymethyl cellulose (CMC). Both chitosan and CMC improved the cell hydrophobicity of CFP312 and increased the contact angle of CFP312 cells from 30.4 to 78.5 and 88.5, respectively. However, CMC increased the degradation ratio of phenanthrene from 45 to nearly 100%, while chitosan did not cause any improvement. We found that CMC was more effective than chitosan in promoting CFP312 to stabilize Pickering emulsion. In the bacteria-CMC complex system, oil was dispersed into small droplets to obtain a high emulsification index and large specific surface area. Moreover, according to the microscopic image of the bacteria-CMC emulsion droplet, we observed that the droplet surface was tightly covered by the CFP312 cells. Therefore, CFP312 cells joined with CMC can utilize phenanthrene in oil phase at the oil-water interface. This study will offer a new strategy for effective microbial degradation of hydrophobic compounds in NAPLs by hydrophilic bacteria. KEY POINTS: • Biodegradation of phenanthrene in Pickering emulsions • Pickering emulsions stabilized by hydrophilic CFP312 joined with CMC. • Phenanthrene was degraded by CFP312 at oil-water interface.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-022-11952-9DOI Listing
May 2022

[A polycyclic aromatic hydrocarbon degrading strain and its potential of degrading phenanthrene in various enhanced systems].

Sheng Wu Gong Cheng Xue Bao 2021 Oct;37(10):3696-3707

Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China.

Polycyclic aromatic hydrocarbons (PAHs) are a class of common environmental pollutants that pose threats to human health. In this study, a mesophilic bacterial strain CFP312 (grown at 15-37 °C, optimal at 30 °C) was isolated from PAHs-contaminated soil samples. It was identified as Moraxella sp. by morphological observation, physiological and biochemical test, and 16S rRNA gene phylogeny analysis. This is the first reported PAHs degrading strains in Moraxella. Degradation analysis showed that 84% and 90% of the loaded phenanthrene (400 mg/L) were degraded within 48 h and 60 h, and the degradation rates reached 1.21 and 1.29 mg/(L·h), respectively. During the degradation of phenanthrene, phenanthrene-3,4-dihydrodiol was detected as an intermediate. Based on this, it was proposed that double oxygenation at the positions 3 and 4 of phenanthrene was the first step of biodegradation. Adaptability of strain CFP312 to different enhanced phenanthrene-degradation systems was tested in aqueous-organic system, micellar aqueous system, and cloud point system. Strain CFP312 showed good adaptability to different systems. In addition, the bacterium can rapidly degrade the phenanthrene in contaminated soil in slurry-aqueous system, indicating great potential in environmental remediation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.13345/j.cjb.210212DOI Listing
October 2021

Effect of heme oxygenase 1 and renin/prorenin receptor on oxidized low-density lipoprotein-induced human umbilical vein endothelial cells.

Exp Ther Med 2019 Sep 12;18(3):1752-1760. Epub 2019 Jul 12.

Department of Integrated Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China.

The incidence of depression has previously been correlated to hypertension. The aim of the present study was to explore the mechanisms of depression and hypertension by examining the expression and interaction of renin/prorenin receptor (PRR) and heme oxygenase 1 (HO-1) in vascular endothelial cells. A case-control study was conducted, and general data and serum factors were compared between hypertension patients complicated with depression and patients with hypertension alone. Logistic regression analysis was used to detect risk factors associated with hypertension complicated with depression. In addition, human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) and/or PRR gene silencing, and a Cell Counting Kit-8 (CCK-8) assay was performed to test their proliferation. The concentrations of inflammatory factors and oxidative stress factor were also detected using enzyme-linked immunosorbent assay and chemical colorimetry. Western blot analysis and reverse transcription-quantitative polymerase chain reaction were applied to detect protein and mRNA expression levels, respectively. The results revealed that HO-1 and renin precursor (Rep) were independent factors that affected hypertension complicated with depression. Serum HO-1 levels in patients with hypertension complicated with depression were significantly lower than that in hypertensive patients without depression, while Rep levels in patients with hypertension complicated with depression were significantly higher than that in hypertensive patients without depression. In HUVECs, ox-LDL reduced the cell proliferation in a dose-dependent manner, upregulated the expression of PRR gene and downregulated the expression of HO-1 gene. It was also observed that silencing of the PRR gene promoted the expression of the HO-1 gene. Furthermore, ox-LDL upregulated the inflammatory response and oxidative stress levels, while PRR gene silencing inhibited the ox-LDL-induced inflammatory factor and oxidative stress levels in HUVECs. Thus, regulating the expression levels of HO-1 and PRR to inhibit the oxidative stress and pro-inflammatory effect of ox-LDL may provide new insight for the treatment of hypertension patients with depression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3892/etm.2019.7769DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6676210PMC
September 2019

The impact of exogenous CO releasing molecule CORM-2 on inflammation and signaling of orthotopic lung cancer.

Oncol Lett 2018 Sep 26;16(3):3223-3230. Epub 2018 Jun 26.

Department of Integrated Traditional Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China.

The present study aimed to evaluate the therapeutic effect of CO-releasing molecule-2 (CORM-2) in an established mouse orthotopic lung cancer model and investigate the underlying mechanism associated with inflammation pathway. A total of 80 mice were randomly divided into two groups with 20 serving as a normal control and 60 used for the orthotopic lung cancer model. The tumor group was either untreated, or administrated with DMSO or CORM-2. The mice were sacrificed at day 7 and 14 post-treatment, and the body weight, and thymus and spleen indices were determined. Pathological analysis was performed with hematoxylin and eosin (HE) staining. Serous inflammatory factors were measured using an ELISA. The expression levels of eukaryotic translation initiation factor 4E, p70S6K and toll-like receptor-4 (TLR4) were quantified by reverse transcription-polymerase chain reaction. The effects of CORM-2 on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), TLR4/nuclear factor (NF)-κB signaling pathways were determined by western blotting. The body weight increased over time in the control group, while it significantly declined in tumor-bearing mice (P<0.05). CORM-2 treatment significantly increased body weight in comparison with the model and DSMO treatment groups (P<0.05). The thymus and spleen indices both reduced in the model and DMSO treatment groups, which was significantly rescued with CORM-2 administration (P<0.05). The HE staining results demonstrated few nodule formations, fibrous hyperplasia and extensive necrosis, which suggested overt inhibitory effects against cancer of CORM-2. The serous contents of tumor necrosis factor-α, interleukin (IL)-1β and IL-6 in the CORM-2 group was significantly lower compared with that in the model and DMSO groups (P<0.05). The ratio of phosphorylated (p-PI3K/PI3K, p-AKT/AKT, p-mTOR/mTOR, p-NF-κB-p65/NF-κB-p65 and expression of TLR4 significantly decreased in the CORM-2 group compared with the model and DMSO groups (P<0.05). To the best of our knowledge, the data in the present study demonstrated for the first time, the therapeutic potential of the CORM complex, which is associated with suppression of inflammation and general protein synthesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3892/ol.2018.9022DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096140PMC
September 2018
-->