Publications by authors named "Coleen Kane"

3 Publications

  • Page 1 of 1

Genetic analysis of Pycr1 and Pycr2 in mice.

Genetics 2021 Mar 18. Epub 2021 Mar 18.

The Jackson Laboratory, Bar Harbor, ME 04609 USA.

The final step in proline biosynthesis is catalyzed by three pyrroline-5-carboxylate reductases, PYCR1, PYCR2, and PYCR3, which convert pyrroline-5-carboxylate (P5C) to proline. Mutations in human PYCR1 and ALDH18A1 (P5C Synthetase) cause Cutis Laxa (CL), whereas mutations in PYCR2 cause hypomyelinating leukodystrophy 10 (HLD10). Here, we investigated the genetics of Pycr1 and Pycr2 in mice. A null allele of Pycr1 did not show integument or CL-related phenotypes. We also studied a novel chemically-induced mutation in Pycr2. Mice with recessive loss-of-function mutations in Pycr2 showed phenotypes consistent with neurological and neuromuscular disorders, including weight loss, kyphosis, and hind-limb clasping. The peripheral nervous systems was largely unaffected, with only mild axonal atrophy in peripheral nerves. A severe loss of subcutaneous fat in Pycr2 mutant mice is reminiscent of a CL-like phenotype, but primary features such as elastin abnormalities were not observed. Aged Pycr2 mutant mice had reduced white blood cell counts and altered lipid metabolism, suggesting a generalized metabolic disorder. PYCR1 and -2 have similar enzymatic and cellular activities, and consistent with previous studies, both were localized in the mitochondria in fibroblasts. Both PYCR1 and -2 were able to complement loss of Pro3, the yeast enzyme that converts P5C to proline, confirming their activity as P5C reductases. In mice, Pycr1; Pycr2 double mutants were sub-viable and unhealthy compared to either single mutant, indicating the genes are largely functionally redundant. Proline levels were not reduced, and precursors were not increased in serum from Pycr2 mutant mice or in lysates from skin fibroblast cultures, but placing Pycr2 mutant mice on a proline-free diet worsened the phenotype. Thus, Pycr1 and -2 have redundant functions in proline biosynthesis, and their loss makes proline a semi-essential amino acid. These findings have implications for understanding the genetics of CL and HLD10, and for modeling these disorders in mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/genetics/iyab048DOI Listing
March 2021

Exome sequencing reveals pathogenic mutations in 91 strains of mice with Mendelian disorders.

Genome Res 2015 Jul 27;25(7):948-57. Epub 2015 Apr 27.

The Jackson Laboratory, Bar Harbor, Maine 04609, USA;

Spontaneously arising mouse mutations have served as the foundation for understanding gene function for more than 100 years. We have used exome sequencing in an effort to identify the causative mutations for 172 distinct, spontaneously arising mouse models of Mendelian disorders, including a broad range of clinically relevant phenotypes. To analyze the resulting data, we developed an analytics pipeline that is optimized for mouse exome data and a variation database that allows for reproducible, user-defined data mining as well as nomination of mutation candidates through knowledge-based integration of sample and variant data. Using these new tools, putative pathogenic mutations were identified for 91 (53%) of the strains in our study. Despite the increased power offered by potentially unlimited pedigrees and controlled breeding, about half of our exome cases remained unsolved. Using a combination of manual analyses of exome alignments and whole-genome sequencing, we provide evidence that a large fraction of unsolved exome cases have underlying structural mutations. This result directly informs efforts to investigate the similar proportion of apparently Mendelian human phenotypes that are recalcitrant to exome sequencing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/gr.186882.114DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4484392PMC
July 2015

Mouse gestation length is genetically determined.

PLoS One 2010 Aug 25;5(8):e12418. Epub 2010 Aug 25.

The Jackson Laboratory, Bar Harbor, Maine, United States of America.

Background: Preterm birth is an enormous public health problem, affecting over 12% of live births and costing over $26 billion in the United States alone. The causes are complex, but twin studies support the role of genetics in determining gestation length. Despite widespread use of the mouse in studies of the genetics of preterm birth, there have been few studies that actually address the precise natural gestation length of the mouse, and to what degree the timing of labor and birth is genetically determined.

Methodology/principal Findings: To further develop the mouse as a genetic model of preterm birth, we developed a high-throughput monitoring system and measured the gestation length in 15 inbred strains. Our results show an unexpectedly wide variation in overall gestation length between strains that approaches two full days, while intra-strain variation is quite low. Although litter size shows a strong inverse correlation with gestation length, genetic difference alone accounts for a significant portion of the variation. In addition, ovarian transplant experiments support a primary role of maternal genetics in the determination of gestation length. Preliminary analysis of gestation length in the C57BL/6J-Chr#(A/J)/NaJ chromosome substitution strain (B.A CSS) panel suggests complex genetic control of gestation length.

Conclusions/significance: Together, these data support the role of genetics in regulating gestation length and present the mouse as an important tool for the discovery of genes governing preterm birth.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0012418PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928290PMC
August 2010