Publications by authors named "Clayton Deighan"

6 Publications

  • Page 1 of 1

WJMSC-derived small extracellular vesicle enhance T cell suppression through PD-L1.

J Extracell Vesicles 2021 Feb 8;10(4):e12067. Epub 2021 Feb 8.

Department of Pathology and Laboratory Medicine University of Kansas Medical Center Kansas City Kansas USA.

Both mesenchymal stem cells (MSCs) and their corresponding small extracellular vesicles (sEVs, commonly referred to as exosomes) share similar immunomodulatory properties that are potentially beneficial for the treatment of acute graft versus host disease (aGvHD). We report that clinical grade Wharton's Jelly-derived MSCs (WJMSCs) secrete sEVs enriched in programmed death-ligand 1 (PD-L1), an essential ligand for an inhibitory immune checkpoint. A rapid increase in circulating sEV-associated PD-L1 was observed in patients with aGvHD and was directly associated with the infusion time of clinical grade WJMSCs. In addition, in vitro inhibitory antibody mediated blocking of sEV-associated PD-L1 restored T cell activation (TCA), suggesting a functional inhibitory role of sEVs-PD-L1. PD-L1-deficient sEVs isolated from WJMSCs following CRISPR-Cas9 gene editing fail to inhibit TCA. Furthermore, we found that PD-L1 is essential for WJMSC-derived sEVs to modulate T cell receptors (TCRs). Our study reveals an important mechanism by which therapeutic WJMSCs modulate TCR-mediated TCA through sEVs or sEV-carried immune checkpoints. In addition, our clinical data suggest that sEV-associated PD-L1 may be not only useful in predicting the outcomes from WJMSC clinical administration, but also in developing cell-independent therapy for aGvHD patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jev2.12067DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7869022PMC
February 2021

Diverse Populations of Extracellular Vesicles with Opposite Functions during Herpes Simplex Virus 1 Infection.

J Virol 2021 Feb 24;95(6). Epub 2021 Feb 24.

University of Kansas Medical Center, Department of Microbiology, Molecular Genetics and Immunology, Kansas City, Kansas, USA

Extracellular vesicles (EVs) are released by all types of cells as a means of intercellular communication. Their significance lies in the fact that they can alter recipient cell functions, despite their limited capacity for cargo. We have previously demonstrated that herpes simplex virus 1 (HSV-1) infection influences the cargo and functions of EVs released by infected cells and that these EVs negatively impact a subsequent HSV-1 infection. In the present study, we have implemented cutting-edge technologies to further characterize EVs released during HSV-1 infection. We identified distinct EV populations that were separable through a gradient approach. One population was positive for the tetraspanin CD63 and was distinct from EVs carrying components of the endosomal sorting complexes required for transport (ESCRT). Nanoparticle tracking analysis (NTA) combined with protein analysis indicated that the production of CD63 EVs was selectively induced upon HSV-1 infection. The ExoView platform supported these data and suggested that the amount of CD63 per vesicle is larger upon infection. This platform also identified EV populations positive for other tetraspanins, including CD81 and CD9, whose abundance decreased upon HSV-1 infection. The imulator of terferon enes (STING) was found in CD63 EVs released during HSV-1 infection, while viral components were found in ESCRT EVs. Functional characterization of these EVs demonstrated that they have opposite effects on the infection, but the dominant effect was negative. Overall, we have identified the dominant population of EVs, and other EV populations produced during HSV-1 infection, and we have provided information about potential roles. Extracellular vesicles mediate cell-to-cell communication and convey messages important for cell homeostasis. Pathways of EV biogenesis are often hijacked by pathogens to facilitate their dissemination and to establish a favorable microenvironment for the infection. We have previously shown that HSV-1 infection alters the cargo and functions of the released EVs, which negatively impact the infection. We have built upon our previous findings by developing procedures to separate EV populations from HSV-1-infected cells. We identified the major population of EVs released during infection, which carries the DNA sensor STING and has an antiviral effect. We also identified an EV population that carries selected viral proteins and has a proviral role. This is the first study to characterize EV populations during infection. These data indicate that the complex interactions between the virus and the host are extended to the extracellular environment and could impact HSV-1 dissemination and persistence in the host.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.02357-20DOI Listing
February 2021

Analyzing the miRNA content of extracellular vesicles by fluorescence nanoparticle tracking.

Nanomedicine 2017 02 28;13(2):765-770. Epub 2016 Oct 28.

William G. Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, USA; Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Ohio State University, Columbus, OH, USA; Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. Electronic address:

We present a method that takes advantage of the fluorophore loading dependence of fluorescence nanoparticle tracking (fNTA) to determine the content of specific miRNA targets in extracellular vesicles (EVs) and their stoichiometry across the entire EV population. The method is based on an assay for detecting EV miRNA by hybridization to fluorescently labeled, miRNA-specific molecular beacons encapsulated in cationic lipoplex nanoparticles that fuse non-specifically with negatively charged EVs. To demonstrate the method, we carry out a stoichiometric analysis of miR-21 in EVs released from A549 lung cancer cells. We find approximately 2.3% of the A549 EVs have an average copy number of ~44 miR-21/A549 EV and contain at least a threshold number of 33 miR-21 copies/A549 EV required for fluorescence tracking. Potential applications of sizing, enumerating, and phenotyping EVs using this method include specifying dosages for therapeutic applications and identifying specific EV subpopulations in patient samples for diagnostic applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2016.10.013DOI Listing
February 2017

Multiparameter Evaluation of the Heterogeneity of Circulating Tumor Cells Using Integrated RNA Hybridization and Immunocytochemical Analysis.

Front Oncol 2016 8;6:234. Epub 2016 Nov 8.

William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA; Analytical Cytometry Shared Resource, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.

Circulating tumor cells (CTCs) are routinely identified as cytokeratin (CK)-positive, epithelial cell adhesion molecule (EpCAM)-positive, and CD45-negative and are enriched based on EpCAM. However, there are a number of methodological challenges regarding both isolation and characterization of these rare CTCs including downregulation or absence of EpCAM in a variety of solid tumors leading to the omission of subpopulations of CTCs, difficulties in analyzing RNA and protein targets in CTCs due to the rarity of these cells, and low levels of targets and technological limitations of visualizing the targets of interest on each individual cell. Building on our previous CTC research on CD45-based negative magnetic separation and four-color fluorescent immunocytochemical (ICC) staining, RNA hybridization (ISH) was applied to fluorescently target mRNA sequences corresponding to tumor-related genes at the single CTC level. Multiple categories of markers are targeted including CK, human epidermal growth factor receptor family markers, Hedgehog pathway markers, human papillomavirus markers, and protein arginine methyltransferase 5. In addition, an integrated method of RNA ISH and fluorescent ICC staining was developed to visualize CTCs on both mRNA and protein levels. The robustness of the integrated co-ICC and RNA ISH staining was demonstrated by a series of tests on representative tumor markers of different categories. The integrated staining can incorporate the advantages of both RNA ISH and fluorescent ICC staining and provide more intense signals and more specific bindings. With this integrated staining methodology, distinct staining patterns were applied in this report to facilitate the searching and characterization of rare subgroups of CTCs. These results support the existence of diverse groups of CTCs at both protein and mRNA transcript levels and provide an analytical tool for the research on CTCs of rare subgroups.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2016.00234DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5099140PMC
November 2016

Heterogeneous atypical cell populations are present in blood of metastatic breast cancer patients.

Breast Cancer Res 2014 Mar 6;16(2):R23. Epub 2014 Mar 6.

Introduction: Circulating tumor cells (CTCs) are commonly isolated from the blood by targeting the epithelial cell adhesion molecule (EpCAM) through positive selection. However, EpCAM can be downregulated during metastatic progression, or it can be initially not present. We designed the present prospective trial to characterize CTCs as well as other circulating cell populations in blood samples from women with metastatic breast cancer without EpCAM-dependent enrichment and/or isolation technology.

Methods: A total of 32 patients with metastatic breast cancer were enrolled, and blood samples were processed using a previously described negative depletion immunomagnetic methodology. Samples from healthy volunteers were run as controls (n = 5). Multistep sequential labeling was performed to label and fix cell-surface markers followed by permeabilization for cytokeratins (CK) 8, 18 and 19. Multiparametric flow cytometry (FCM) analysis was conducted using a BD LSR II flow cytometer or a BD FACSAria II or FACSAria III cell sorter. Immunocytochemical staining on postenrichment specimens for DAPI, EpCAM, CD45, CK, epidermal growth factor receptor and vimentin was performed. Expression of these markers was visualized using confocal microscopy (CM).

Results: CD45-negative/CK-positive (CD45- CK+) populations with EpCAM + and EpCAM - expression were identified with both FCM and CM from the negatively enriched patient samples. In addition, EpCAM + and EpCAM - populations that were CK + and coexpressing the pan-hematopoietic marker CD45 were also noted. There were more CK + EpCAM - events/ml than CK + EpCAM + events/ml in both the CD45- and CD45+ fractions (both statistically significant at P ≤ 0.0005). The number of CK + CD45- and CK + CD45+ events per milliliter in blood samples (regardless of EpCAM status) was higher in patient samples than in normal control samples (P ≤ 0.0005 and P ≤ 0.026, respectively). Further, a significant fraction of the CK + CD45+ events also expressed CD68, a marker associated with tumor-associated macrophages. Higher levels of CD45-CK + EpCAM - were associated with worse overall survival (P = 0.0292).

Conclusions: Metastatic breast cancer patients have atypical cells that are CK + EpCAM - circulating in their blood. Because a substantial number of these patients do not have EpCAM + CTCs, additional studies are needed to evaluate the role of EpCAM - circulating cells as a prognostic and predictive marker.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/bcr3622DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053256PMC
March 2014

Isolation and analysis of rare cells in the blood of cancer patients using a negative depletion methodology.

Methods 2013 Dec 20;64(2):169-82. Epub 2013 Sep 20.

William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, United States.

A variety of enrichment/isolation technologies exist for the characterization of rare cells in the blood of cancer patients. In this article, a negative depletion process is presented and discussed which consists of red blood cell (RBC) lysis and the subsequent removal of CD45 expressing cells through immunomagnetic depletion. Using this optimized assembly on 120 whole blood specimens, from 71 metastatic breast cancer patients, after RBC lysis, the average nucleated cell log depletion was 2.56 with a 77% recovery of the nucleated cells. The necessity of exploring different anti-CD45 antibody clones to label CD45 expressing cells in this enrichment scheme is also presented and discussed. An optimized, four-color immunofluorescence staining is conducted on the cells retained after the CD45-based immunomagnetic depletion process. Different types of rare non-hematopoietic cells are found in these enriched peripheral blood samples and a wide range of external and internal markers have been characterized, which demonstrates the range and heterogeneity of the rare cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymeth.2013.09.006DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874448PMC
December 2013