Publications by authors named "Clay Tabor"

4 Publications

  • Page 1 of 1

Past climates inform our future.

Science 2020 11;370(6517)

Department of Oceanography, Texas A&M University, College Station, TX, USA.

As the world warms, there is a profound need to improve projections of climate change. Although the latest Earth system models offer an unprecedented number of features, fundamental uncertainties continue to cloud our view of the future. Past climates provide the only opportunity to observe how the Earth system responds to high carbon dioxide, underlining a fundamental role for paleoclimatology in constraining future climate change. Here, we review the relevancy of paleoclimate information for climate prediction and discuss the prospects for emerging methodologies to further insights gained from past climates. Advances in proxy methods and interpretations pave the way for the use of past climates for model evaluation-a practice that we argue should be widely adopted.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aay3701DOI Listing
November 2020

Past and future decline of tropical pelagic biodiversity.

Proc Natl Acad Sci U S A 2020 06 26;117(23):12891-12896. Epub 2020 May 26.

Faculty of Science, University of the Ryukyus, 903-0213 Okinawa, Japan.

A major research question concerning global pelagic biodiversity remains unanswered: when did the apparent tropical biodiversity depression (i.e., bimodality of latitudinal diversity gradient [LDG]) begin? The bimodal LDG may be a consequence of recent ocean warming or of deep-time evolutionary speciation and extinction processes. Using rich fossil datasets of planktonic foraminifers, we show here that a unimodal (or only weakly bimodal) diversity gradient, with a plateau in the tropics, occurred during the last ice age and has since then developed into a bimodal gradient through species distribution shifts driven by postglacial ocean warming. The bimodal LDG likely emerged before the Anthropocene and industrialization, and perhaps ∼15,000 y ago, indicating a strong environmental control of tropical diversity even before the start of anthropogenic warming. However, our model projections suggest that future anthropogenic warming further diminishes tropical pelagic diversity to a level not seen in millions of years.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1916923117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7293716PMC
June 2020

Response to Comment on "Long-term climate forcing by atmospheric oxygen concentrations".

Science 2016 Jul;353(6295):132

Department of Biology, Baylor University, Waco, TX 76798, USA.

Goldblatt argues that a decrease in pressure broadening of absorption lines in an atmosphere with low oxygen leads to an increase in outgoing longwave radiation and atmospheric cooling. We demonstrate that cloud and water vapor feedbacks in a global climate model compensate for these decreases and lead to atmospheric warming.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aad8550DOI Listing
July 2016

CLIMATE CHANGE. Long-term climate forcing by atmospheric oxygen concentrations.

Science 2015 Jun 11;348(6240):1238-41. Epub 2015 Jun 11.

Department of Biology, Baylor University, Waco, TX 76798, USA.

The percentage of oxygen in Earth's atmosphere varied between 10% and 35% throughout the Phanerozoic. These changes have been linked to the evolution, radiation, and size of animals but have not been considered to affect climate. We conducted simulations showing that modulation of the partial pressure of oxygen (pO2), as a result of its contribution to atmospheric mass and density, influences the optical depth of the atmosphere. Under low pO2 and a reduced-density atmosphere, shortwave scattering by air molecules and clouds is less frequent, leading to a substantial increase in surface shortwave forcing. Through feedbacks involving latent heat fluxes to the atmosphere and marine stratus clouds, surface shortwave forcing drives increases in atmospheric water vapor and global precipitation, enhances greenhouse forcing, and raises global surface temperature. Our results implicate pO2 as an important factor in climate forcing throughout geologic time.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1260670DOI Listing
June 2015