Publications by authors named "Claudio Grosman"

26 Publications

  • Page 1 of 1

Signal transduction through Cys-loop receptors is mediated by the nonspecific bumping of closely apposed domains.

Proc Natl Acad Sci U S A 2021 Apr;118(14)

Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;

One of the most fundamental questions in the field of Cys-loop receptors (pentameric ligand-gated ion channels, pLGICs) is how the affinity for neurotransmitters and the conductive/nonconductive state of the transmembrane pore are correlated despite the ∼60-Å distance between the corresponding domains. Proposed mechanisms differ, but they all converge into the idea that interactions between wild-type side chains across the extracellular-transmembrane-domain (ECD-TMD) interface are crucial for this phenomenon. Indeed, the successful design of fully functional chimeras that combine intact ECD and TMD modules from different wild-type pLGICs has commonly been ascribed to the residual conservation of sequence that exists at the level of the interfacial loops even between evolutionarily distant parent channels. Here, using mutagenesis, patch-clamp electrophysiology, and radiolabeled-ligand binding experiments, we studied the effect of eliminating this residual conservation of sequence on ion-channel function and cell-surface expression. From our results, we conclude that proper state interconversion ("gating") does not require conservation of sequence-or even physicochemical properties-across the ECD-TMD interface. Wild-type ECD and TMD side chains undoubtedly interact with their surroundings, but the interactions between them-straddling the interface-do not seem to be more important for gating than those occurring elsewhere in the protein. We propose that gating of pLGICs requires, instead, that the overall structure of the interfacial loops be conserved, and that their relative orientation and distance be the appropriate ones for changes in one side to result in changes in the other, in a phenomenon akin to the nonspecific "bumping" of closely apposed domains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2021016118DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8040799PMC
April 2021

Rapid multi-directed cholinergic transmission in the central nervous system.

Nat Commun 2021 03 2;12(1):1374. Epub 2021 Mar 2.

Department of Biology, University of Victoria, Victoria, BC, Canada.

In many parts of the central nervous system, including the retina, it is unclear whether cholinergic transmission is mediated by rapid, point-to-point synaptic mechanisms, or slower, broad-scale 'non-synaptic' mechanisms. Here, we characterized the ultrastructural features of cholinergic connections between direction-selective starburst amacrine cells and downstream ganglion cells in an existing serial electron microscopy data set, as well as their functional properties using electrophysiology and two-photon acetylcholine (ACh) imaging. Correlative results demonstrate that a 'tripartite' structure facilitates a 'multi-directed' form of transmission, in which ACh released from a single vesicle rapidly (~1 ms) co-activates receptors expressed in multiple neurons located within ~1 µm of the release site. Cholinergic signals are direction-selective at a local, but not global scale, and facilitate the transfer of information from starburst to ganglion cell dendrites. These results suggest a distinct operational framework for cholinergic signaling that bears the hallmarks of synaptic and non-synaptic forms of transmission.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-21680-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925691PMC
March 2021

Cryo-EM structures of a lipid-sensitive pentameric ligand-gated ion channel embedded in a phosphatidylcholine-only bilayer.

Proc Natl Acad Sci U S A 2020 01 7;117(3):1788-1798. Epub 2020 Jan 7.

Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;

The lipid dependence of the nicotinic acetylcholine receptor from the electric organ has long been recognized, and one of the most consistent experimental observations is that, when reconstituted in membranes formed by zwitterionic phospholipids alone, exposure to agonist fails to elicit ion-flux activity. More recently, it has been suggested that the bacterial homolog ELIC ( ligand-gated ion channel) has a similar lipid sensitivity. As a first step toward the elucidation of the structural basis of this phenomenon, we solved the structures of ELIC embedded in palmitoyl-oleoyl-phosphatidylcholine- (POPC-) only nanodiscs in both the unliganded (4.1-Å resolution) and agonist-bound (3.3 Å) states using single-particle cryoelectron microscopy. Comparison of the two structural models revealed that the largest differences occur at the level of loop C-at the agonist-binding sites-and the loops at the interface between the extracellular and transmembrane domains (ECD and TMD, respectively). On the other hand, the transmembrane pore is occluded in a remarkably similar manner in both structures. A straightforward interpretation of these findings is that POPC-only membranes frustrate the ECD-TMD coupling in such a way that the "conformational wave" of liganded-receptor gating takes place in the ECD and the interfacial M2-M3 linker but fails to penetrate the membrane and propagate into the TMD. Furthermore, analysis of the structural models and molecular simulations suggested that the higher affinity for agonists characteristic of the open- and desensitized-channel conformations results, at least in part, from the tighter confinement of the ligand to its binding site; this limits the ligand's fluctuations, and thus delays its escape into bulk solvent.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1906823117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983364PMC
January 2020

A Crucial Role for Side-Chain Conformation in the Versatile Charge Selectivity of Cys-Loop Receptors.

Biophys J 2019 05 2;116(9):1667-1681. Epub 2019 Apr 2.

Center for Biophysics and Quantitative Biology, Urbana, Illinois; Department of Molecular and Integrative Physiology, Urbana, Illinois; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois. Electronic address:

Whether synaptic transmission is excitatory or inhibitory depends, to a large extent, on whether the ion channels that open upon binding the released neurotransmitter conduct cations or anions. The mechanistic basis of the opposite charge selectivities of Cys-loop receptors has only recently begun to emerge. It is now clear that ionized side chains-whether pore-facing or buried-in the first α-helical turn of the second transmembrane segments underlie this phenomenon and that the electrostatics of backbone atoms are not critically involved. Moreover, on the basis of electrophysiological observations, it has recently been suggested that not only the sign of charged side chains but also their conformation are crucial determinants of cation-anion selectivity. To challenge these ideas with the chemical and structural rigor that electrophysiological observations naturally lack, we performed molecular dynamics, Brownian dynamics, and electrostatics calculations of ion permeation. To this end, we used structural models of the open-channel conformation of the α1 glutamate-gated Cl channel and the α1 glycine receptor. Our results provided full support to the notion that the conformation of charged sides chains matters for charge selectivity. Indeed, whereas some rotamers of the buried arginines at position 0' conferred high selectivity for anions, others supported the permeation of cations and anions at similar rates or even allowed the faster permeation of cations. Furthermore, we found that modeling glutamates at position -1' of the anion-selective α1 glycine receptor open-state structure-instead of the five native alanines-switches charge selectivity also in a conformation-dependent manner, with some glutamate rotamers being much more effective at conferring selectivity for cations than others. Regarding pore size, we found that the mere expansion of the pore has only a minimal impact on cation-anion selectivity. Overall, these results bring to light the previously unappreciated impact of side-chain conformation on charge selectivity in Cys-loop receptors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpj.2019.03.022DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6506641PMC
May 2019

Chasing the open-state structure of pentameric ligand-gated ion channels.

J Gen Physiol 2017 Dec 31;149(12):1119-1138. Epub 2017 Oct 31.

Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL

Remarkable advances have been made toward the structural characterization of ion channels in the last two decades. However, the unambiguous assignment of well-defined functional states to the obtained structural models has proved challenging. In the case of the superfamily of nicotinic-receptor channels (also referred to as pentameric ligand-gated ion channels [pLGICs]), for example, two different types of model of the open-channel conformation have been proposed on the basis of structures solved to resolutions better than 4.0 Å. At the level of the transmembrane pore, the open-state models of the proton-gated pLGIC from (GLIC) and the invertebrate glutamate-gated Cl channel (GluCl) are very similar to each other, but that of the glycine receptor (GlyR) is considerably wider. Indeed, the mean distances between the axis of ion permeation and the Cα atoms at the narrowest constriction of the pore (position -2') differ by ∼2 Å in these two classes of model, a large difference when it comes to understanding the physicochemical bases of ion conduction and charge selectivity. Here, we take advantage of the extreme open-channel stabilizing effect of mutations at pore-facing position 9'. We find that the I9'A mutation slows down entry into desensitization of GLIC to the extent that macroscopic currents decay only slightly by the end of pH 4.5 solution applications to the extracellular side for several minutes. We crystallize (at pH 4.5) two variants of GLIC carrying this mutation and solve their structures to resolutions of 3.12 Å and 3.36 Å. Furthermore, we perform all-atom molecular dynamics simulations of ion permeation and picrotoxinin block, using the different open-channel structural models. On the basis of these results, we favor the notion that the open-channel structure of pLGICs from animals is much closer to that of the narrow models (of GLIC and GluCl) than it is to that of the GlyR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1085/jgp.201711803DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715906PMC
December 2017

Identifying the elusive link between amino acid sequence and charge selectivity in pentameric ligand-gated ion channels.

Proc Natl Acad Sci U S A 2016 Nov 10;113(45):E7106-E7115. Epub 2016 Oct 10.

Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;

Among neurotransmitter-gated ion channels, the superfamily of pentameric ligand-gated ion channels (pLGICs) is unique in that its members display opposite permeant-ion charge selectivities despite sharing the same structural fold. Although much effort has been devoted to the identification of the mechanism underlying the cation-versus-anion selectivity of these channels, a careful analysis of past work reveals that discrepancies exist, that different explanations for the same phenomenon have often been put forth, and that no consensus view has yet been reached. To elucidate the molecular basis of charge selectivity for the superfamily as a whole, we performed extensive mutagenesis and electrophysiological recordings on six different cation-selective and anion-selective homologs from vertebrate, invertebrate, and bacterial origin. We present compelling evidence for the critical involvement of ionized side chains-whether pore-facing or buried-rather than backbone atoms and propose a mechanism whereby not only their charge sign but also their conformation determines charge selectivity. Insertions, deletions, and residue-to-residue mutations involving nonionizable residues in the intracellular end of the pore seem to affect charge selectivity by changing the rotamer preferences of the ionized side chains in the first turn of the M2 α-helices. We also found that, upon neutralization of the charged residues in the first turn of M2, the control of charge selectivity is handed over to the many other ionized side chains that decorate the pore. This explains the long-standing puzzle as to why the neutralization of the intracellular-mouth glutamates affects charge selectivity to markedly different extents in different cation-selective pLGICs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1608519113DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5111664PMC
November 2016

Engineered Ionizable Side Chains.

Adv Exp Med Biol 2015 ;869:5-23

Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, Program in Neuroscience, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

One of the great challenges of mechanistic ion-channel biology is to obtain structural information from well-defined functional states. In the case of neurotransmitter-gated ion channels, the open-channel conformation is particularly elusive owing to its transient nature and brief mean lifetime. In this Chapter, we show how the analysis of single-channel currents recorded from mutants engineered to contain single ionizable side chains in the transmembrane region can provide specific information about the open-channel conformation without any interference from the closed or desensitized conformations. The method takes advantage of the fact that the alternate binding and unbinding of protons to and from an ionizable side chain causes the charge of the protein to fluctuate by 1 unit. We show that, in mutant muscle acetylcholine nicotinic receptors (AChRs), this fluctuating charge affects the rate of ion conduction in such a way that individual proton-transfer events can be identified in a most straightforward manner. From the extent to which the single-channel current amplitude is reduced every time a proton binds, we can learn about the proximity of the engineered side chain to the lumen of the pore. And from the kinetics of proton binding and unbinding, we can calculate the side-chain's affinity for protons (pK a), and hence, we can learn about the electrostatic properties of the microenvironment around the introduced ionizable group. The application of this method to systematically mutated AChRs allowed us to identify unambiguously the stripes of the M1, M2 and M3 transmembrane α-helices that face the pore's lumen in the open-channel conformation in the context of a native membrane.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-2845-3_2DOI Listing
March 2016

The atypical cation-conduction and gating properties of ELIC underscore the marked functional versatility of the pentameric ligand-gated ion-channel fold.

J Gen Physiol 2015 Jul 15;146(1):15-36. Epub 2015 Jun 15.

Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801 Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801 Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801

The superfamily of pentameric ligand-gated ion channels (pLGICs) is unique among ionotropic receptors in that the same overall structure has evolved to generate multiple members with different combinations of agonist specificities and permeant-ion charge selectivities. However, aside from these differences, pLGICs have been typically regarded as having several invariant functional properties. These include pore blockade by extracellular quaternary-ammonium cations in the micromolar-to-millimolar concentration range (in the case of the cation-selective members), and a gain-of-function phenotype, which manifests as a slower deactivation time course, as a result of mutations that reduce the hydrophobicity of the transmembrane pore lining. Here, we tested this notion on three distantly related cation-selective members of the pLGIC superfamily: the mouse muscle nicotinic acetylcholine receptor (nAChR), and the bacterial GLIC and ELIC channels. Remarkably, we found that, whereas low millimolar concentrations of TMA(+) and TEA(+) block the nAChR and GLIC, neither of these two quaternary-ammonium cations blocks ELIC at such concentrations; instead, both carry measurable inward currents when present as the only cations on the extracellular side. Also, we found that, whereas lidocaine binding speeds up the current-decay time courses of the nAChR and GLIC in the presence of saturating concentrations of agonists, the binding of lidocaine to ELIC slows this time course down. Furthermore, whereas mutations that reduce the hydrophobicity of the side chains at position 9' of the M2 α-helices greatly slowed the deactivation time course of the nAChR and GLIC, these mutations had little effect--or even sped up deactivation--when engineered in ELIC. Our data indicate that caution should be exercised when generalizing results obtained with ELIC to the rest of the pLGICs, but more intriguingly, they hint at the possibility that ELIC is a representative of a novel branch of the superfamily with markedly divergent pore properties despite a well-conserved three-dimensional architecture.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1085/jgp.201411333DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4485021PMC
July 2015

Side-chain conformation at the selectivity filter shapes the permeation free-energy landscape of an ion channel.

Proc Natl Acad Sci U S A 2014 Aug 21;111(31):E3196-205. Epub 2014 Jul 21.

Center for Biophysics and Computational Biology,Department of Molecular and Integrative Physiology, andNeuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801

On the basis of single-channel currents recorded from the muscle nicotinic acetylcholine receptor (AChR), we have recently hypothesized that the conformation adopted by the glutamate side chains at the first turn of the pore-lining α-helices is a key determinant of the rate of ion permeation. In this paper, we set out to test these ideas within a framework of atomic detail and stereochemical rigor by conducting all-atom molecular dynamics and Brownian dynamics simulations on an extensively validated model of the open-channel muscle AChR. Our simulations provided ample support to the notion that the different rotamers of these glutamates partition into two classes that differ markedly in their ability to catalyze ion conduction, and that the conformations of the four wild-type glutamates are such that two of them "fall" in each rotamer class. Moreover, the simulations allowed us to identify the mm (χ(1) ≅ -60°; χ(2) ≅ -60°) and tp (χ(1) ≅ 180°; χ(2) ≅ +60°) rotamers as the likely conduction-catalyzing conformations of the AChR's selectivity-filter glutamates. More generally, our work shows an example of how experimental benchmarks can guide molecular simulations into providing a type of structural and mechanistic insight that seems otherwise unattainable.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1408950111DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128128PMC
August 2014

The role of intracellular linkers in gating and desensitization of human pentameric ligand-gated ion channels.

J Neurosci 2014 May;34(21):7238-52

Neuroscience Program, Department of Molecular and Integrative Physiology, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

It has recently been proposed that post-translational modification of not only the M3-M4 linker but also the M1-M2 linker of pentameric ligand-gated ion channels modulates function in vivo. To estimate the involvement of the M1-M2 linker in gating and desensitization, we engineered a series of mutations to this linker of the human adult-muscle acetylcholine receptor (AChR), the α3β4 AChR and the homomeric α1 glycine receptor (GlyR). All tested M1-M2 linker mutations had little effect on the kinetics of deactivation or desensitization compared with the effects of mutations to the M2 α-helix or the extracellular M2-M3 linker. However, when the effects of mutations were assessed with 50 Hz trains of ∼1 ms pulses of saturating neurotransmitter, some mutations led to much more, and others to much less, peak-current depression than observed for the wild-type channels, suggesting that these mutations could affect the fidelity of fast synaptic transmission. Nevertheless, no mutation to this linker could mimic the irreversible loss of responsiveness reported to result from the oxidation of the M1-M2 linker cysteines of the α3 AChR subunit. We also replaced the M3-M4 linker of the α1 GlyR with much shorter peptides and found that none of these extensive changes affects channel deactivation strongly or reduces the marked variability in desensitization kinetics that characterizes the wild-type channel. However, we found that these large mutations to the M3-M4 linker can have pronounced effects on desensitization kinetics, supporting the notion that its post-translational modification could indeed modulate α1 GlyR behavior.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.5105-13.2014DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4028499PMC
May 2014

Gating of the proton-gated ion channel from Gloeobacter violaceus at pH 4 as revealed by X-ray crystallography.

Proc Natl Acad Sci U S A 2013 Nov 28;110(46):18716-21. Epub 2013 Oct 28.

Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, Department of Biochemistry, Institute for Genomic Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801.

Cryoelectron microscopy and X-ray crystallography have recently been used to generate structural models that likely represent the unliganded closed-channel conformation and the fully liganded open-channel conformation of different members of the nicotinic-receptor superfamily. To characterize the structure of the closed-channel conformation in its liganded state, we identified a number of positions in the loop between transmembrane segments 2 (M2) and 3 (M3) of a proton-gated ortholog from the bacterium Gloeobacter violaceus (GLIC) where mutations to alanine reduce the liganded-gating equilibrium constant, and solved the crystal structures of two such mutants (T25'A and Y27'A) at pH ~4.0. At the level of backbone atoms, the liganded closed-channel model presented here differs from the liganded open-channel structure of GLIC in the pre-M1 linker, the M3-M4 loop, and much more prominently, in the extracellular half of the pore lining, where the more pronounced tilt of the closed-channel M2 α-helices toward the pore's long axis narrows the permeation pathway. On the other hand, no differences between the liganded closed-channel and open-channel models could be detected at the level of the extracellular domain, where conformational changes are expected to underlie the low-to-high proton-affinity switch that drives gating of proton-bound channels. Thus, the liganded closed-channel model is nearly indistinguishable from the recently described "locally closed" structure. However, because cross-linking strategies (which could have stabilized unstable conformations) and mutations involving ionizable side chains (which could have affected proton-gated channel activation) were purposely avoided, we favor the notion that this structure represents one of the end states of liganded gating rather than an unstable intermediate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1313156110DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3832033PMC
November 2013

The unanticipated complexity of the selectivity-filter glutamates of nicotinic receptors.

Nat Chem Biol 2012 Dec 14;8(12):975-81. Epub 2012 Oct 14.

Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

In ion channels, 'rings' of ionized side chains that decorate the walls of the permeation pathway often lower the energetic barrier to ion conduction. Using single-channel electrophysiological recordings, we studied the poorly understood ring of four glutamates (and one glutamine) that dominates this catalytic effect in the muscle nicotinic acetylcholine receptor ('the intermediate ring of charge'). We show that all four wild-type glutamate side chains are deprotonated in the range of 6.0-9.0 pH, that only two of them contribute to the size of the single-channel current, that these side chains must be able to adopt alternate conformations that either allow or prevent their negative charges from increasing the rate of cation conduction and that the location of these glutamate side chains squarely at one of the ends of the transmembrane pore is critical for their largely unshifted pK(a) values and for the unanticipated impact of their conformational flexibility on cation permeation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nchembio.1092DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3508336PMC
December 2012

Mutations that stabilize the open state of the Erwinia chrisanthemi ligand-gated ion channel fail to change the conformation of the pore domain in crystals.

Proc Natl Acad Sci U S A 2012 Apr 2;109(16):6331-6. Epub 2012 Apr 2.

Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

The determination of structural models of the various stable states of an ion channel is a key step toward the characterization of its conformational dynamics. In the case of nicotinic-type receptors, different structures have been solved but, thus far, these different models have been obtained from different members of the superfamily. In the case of the bacterial member ELIC, a cysteamine-gated channel from Erwinia chrisanthemi, a structural model of the protein in the absence of activating ligand (and thus, conceivably corresponding to the closed state of this channel) has been previously generated. In this article, electrophysiological characterization of ELIC mutants allowed us to identify pore mutations that slow down the time course of desensitization to the extent that the channel seems not to desensitize at all for the duration of the agonist applications (>20 min). Thus, it seems reasonable to conclude that the probability of ELIC occupying the closed state is much lower for the ligand-bound mutants than for the unliganded wild-type channel. To gain insight into the conformation adopted by ELIC under these conditions, we solved the crystal structures of two of these mutants in the presence of a concentration of cysteamine that elicits an intracluster open probability of >0.9. Curiously, the obtained structural models turned out to be nearly indistinguishable from the model of the wild-type channel in the absence of bound agonist. Overall, our findings bring to light the limited power of functional studies in intact membranes when it comes to inferring the functional state of a channel in a crystal, at least in the case of the nicotinic-receptor superfamily.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1119268109DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3341056PMC
April 2012

Estimating the pKa values of basic and acidic side chains in ion channels using electrophysiological recordings: a robust approach to an elusive problem.

Proteins 2011 Dec 8;79(12):3485-93. Epub 2011 Jul 8.

Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

As a step toward gaining a better understanding of the physicochemical bases of pK(a)-value shifts in ion channels, we have previously proposed a method for estimating the proton affinities of systematically engineered ionizable side chains from the kinetic analysis of single-channel current recordings. We reported that the open-channel current flowing through mutants of the (cation-selective) muscle nicotinic acetylcholine receptor (AChR) engineered to bear single basic residues in the transmembrane portion of the pore domain fluctuates between two levels of conductance. Our observations were consistent with the idea that these fluctuations track directly the alternate protonation-deprotonation of basic side chains: protonation of the introduced basic group would attenuate the single-channel conductance, whereas its deprotonation would restore the wild-type-like level. Thus, analysis of the kinetics of these transitions was interpreted to yield the pK(a) values of the substituted side chains. However, other mechanisms can be postulated that would also be consistent with some of our findings but according to which the kinetic analysis of the fluctuations would not yield true pK(a)s. Such mechanisms include the pH-dependent interconversion between two conformations of the channel that, while both ion permeable, would support different cation-conduction rates. In this article, we present experimental evidence for the notion that the fluctuations of the open-channel current observed for the muscle AChR result from the electrostatic interaction between fixed charges and the passing cations rather than from a change in conformation. Hence, we conclude that bona fide pK(a) values can be obtained from single-channel recordings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.23087DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036269PMC
December 2011

Tunable pKa values and the basis of opposite charge selectivities in nicotinic-type receptors.

Nature 2011 May 22;474(7352):526-30. Epub 2011 May 22.

Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

Among ion channels, only the nicotinic-receptor superfamily has evolved to generate both cation- and anion-selective members. Although other, structurally unrelated, neurotransmitter-gated cation channels exist, no other type of neurotransmitter-gated anion channel, and thus no other source of fast synaptic inhibitory signals, has been described so far. In addition to the seemingly straightforward electrostatic effect of the presence (in the cation-selective members) or absence (in the anion-selective ones) of a ring of pore-facing carboxylates, mutational studies have identified other features of the amino-acid sequence near the intracellular end of the pore-lining transmembrane segments (M2) that are also required to achieve the high charge selectivity shown by native channels. However, the mechanism underlying this more subtle effect has remained elusive and a subject of speculation. Here we show, using single-channel electrophysiological recordings to estimate the protonation state of native ionizable side chains, that anion-selective-type sequences favour whereas cation-selective-type sequences prevent the protonation of the conserved, buried basic residues at the intracellular entrance of the pore (the M2 0' position). We conclude that the previously unrecognized tunable charge state of the 0' ring of buried basic side chains is an essential feature of these channels' versatile charge-selectivity filter.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature10015DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3121909PMC
May 2011

Desensitization of neurotransmitter-gated ion channels during high-frequency stimulation: a comparative study of Cys-loop, AMPA and purinergic receptors.

J Physiol 2011 Apr 7;589(Pt 7):1571-85. Epub 2011 Feb 7.

Neuroscience Program, University of Illinois at Urbana-Champaign, 407 S. Goodwin Ave. 524 Burrill Hall, Urbana, IL 61801, USA.

Changes in synaptic strength allow synapses to regulate the flow of information in the neural circuits in which they operate. In particular, changes lasting from milliseconds to minutes (‘short-term changes') underlie a variety of computational operations and, ultimately, behaviours. Most studies thus far have attributed the short-term type of plasticity to activity-dependent changes in the dynamics of neurotransmitter release (a presynaptic mechanism) while largely dismissing the role of the loss of responsiveness of postsynaptic receptor channels to neurotransmitter owing to entry into desensitization. To better define the response of the different neurotransmitter-gated ion channels (NGICs) to repetitive stimulation without interference from presynaptic variables, we studied eight representative members of all three known superfamilies of NGICs in fast-perfused outside-out patches of membrane. We found that the responsiveness of all tested channels (two nicotinic acetylcholine receptors, two glycine receptors, one GABA receptor, two AMPA-type glutamate receptors and one purinergic receptor) declines along trains of brief neurotransmitter pulses delivered at physiologically relevant frequencies to an extent that suggests that the role of desensitization in the synaptic control of action-potential transmission may be more general than previously thought. Furthermore, our results indicate that a sizable fraction (and, for some NGICs, most) of this desensitization occurs during the neurotransmitter-free interpulse intervals. Clearly, an incomplete clearance of neurotransmitter from the synaptic cleft between vesicle-fusion events need not be invoked to account for NGIC desensitization upon repetitive stimulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1113/jphysiol.2010.203315DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099016PMC
April 2011

Bridging the gap between structural models of nicotinic receptor superfamily ion channels and their corresponding functional states.

J Mol Biol 2010 Nov 21;403(5):693-705. Epub 2010 Sep 21.

Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

Aromatic-aromatic interactions are a prominent feature of the crystal structure of ELIC [Protein Data Bank (PDB) code 2VL0], a bacterial member of the nicotinic receptor superfamily of ion channels where five pore-facing phenylalanines come together to form a structure akin to a narrow iris that occludes the transmembrane pore. To identify the functional state of the channel that this structure represents, we engineered phenylalanines at various pore-facing positions of the muscle acetylcholine (ACh) receptor (one position at a time), including the position that aligns with the native phenylalanine 246 of ELIC, and assessed the consequences of such mutations using electrophysiological and toxin-binding assays. From our experiments, we conclude that the interaction among the side chains of pore-facing phenylalanines, rather than the accumulation of their independent effects, leads to the formation of a nonconductive conformation that is unresponsive to the application of ACh and is highly stable even in the absence of ligand. Moreover, electrophysiological recordings from a GLIC channel (another bacterial member of the superfamily) engineered to have a ring of phenylalanines at the corresponding pore-facing position suggest that this novel refractory state is distinct from the well-known desensitized state. It seems reasonable to propose then that it is in this peculiar nonconductive conformation that the ELIC channel was crystallized. It seems also reasonable to propose that, in the absence of rings of pore-facing aromatic side chains, such stable conformation may never be attained by the ACh receptor. Incidentally, we also noticed that the response of the proton-gated wild-type GLIC channel to a fast change in pH from pH 7.4 to pH 4.5 (on the extracellular side) is only transient, with the evoked current fading completely in a matter of  seconds. This raises the possibility that the crystal structures of GLIC obtained at pH 4.0 (PDB code 3EHZ) and pH 4.6 (PDB code 3EAM) correspond to the to the (well-known) desensitized state.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2010.09.026DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2966540PMC
November 2010

Decremental response to high-frequency trains of acetylcholine pulses but unaltered fractional Ca2+ currents in a panel of "slow-channel syndrome" nicotinic receptor mutants.

J Gen Physiol 2009 Feb;133(2):151-69

Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 61801, USA.

The slow-channel congenital myasthenic syndrome (SCCMS) is a disorder of the neuromuscular junction caused by gain-of-function mutations to the muscle nicotinic acetylcholine (ACh) receptor (AChR). Although it is clear that the slower deactivation time course of the ACh-elicited currents plays a central role in the etiology of this disease, it has been suggested that other abnormal properties of these mutant receptors may also be critical in this respect. We characterized the kinetics of a panel of five SCCMS AChRs (alphaS269I, betaV266M, epsilonL221F, epsilonT264P, and epsilonL269F) at the ensemble level in rapidly perfused outside-out patches. We found that, for all of these mutants, the peak-current amplitude decreases along trains of nearly saturating ACh pulses delivered at physiologically relevant frequencies in a manner that is consistent with enhanced entry into desensitization during the prolonged deactivation phase. This suggests that the increasingly reduced availability of activatable AChRs upon repetitive stimulation may well contribute to the fatigability and weakness of skeletal muscle that characterize this disease. Also, these results emphasize the importance of explicitly accounting for entry into desensitization as one of the pathways for burst termination, if meaningful mechanistic insight is to be inferred from the study of the effect of these naturally occurring mutations on channel function. Applying a novel single-channel-based approach to estimate the contribution of Ca(2+) to the total cation currents, we also found that none of these mutants affects the Ca(2+)-conduction properties of the AChR to an extent that seems to be of physiological importance. Our estimate of the Ca(2+)-carried component of the total (inward) conductance of wild-type and SCCMS AChRs in the presence of 150 mM Na(+), 1.8 mM Ca(2+), and 1.7 mM Mg(2+) on the extracellular side of cell-attached patches turned out be in the 5.0-9.4 pS range, representing a fractional Ca(2+) current of approximately 14%, on average. Remarkably, these values are nearly identical to those we estimated for the NR1-NR2A N-methyl-d-aspartate receptor (NMDAR), which has generally been considered to be the main neurotransmitter-gated pathway of Ca(2+) entry into the cell. Our estimate of the rat NMDAR Ca(2+) conductance (using the same single-channel approach as for the AChR but in the nominal absence of extracellular Mg(2+)) was 7.9 pS, corresponding to a fractional Ca(2+) current of 13%.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1085/jgp.200810089DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2638206PMC
February 2009

Pore-opening mechanism of the nicotinic acetylcholine receptor evinced by proton transfer.

Nat Struct Mol Biol 2008 Apr 30;15(4):389-96. Epub 2008 Mar 30.

Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology and Neuroscience Program, University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, 524 Burrill Hall, Urbana, Illinois 61801, USA.

The conformational changes underlying cysteine-loop receptor channel gating remain elusive and controversial. We previously developed a single-channel electrophysiological method that allows structural inferences about the transient open-channel conformation to be made from the effect and properties of introduced charges on systematically engineered ionizable amino acids. Here we have applied this methodology to the entire M1 and M3 segments of the muscle nicotinic acetylcholine receptor, two transmembrane alpha-helices that pack against the pore-lining M2 alpha-helix. Together with our previous results on M2, these data suggest that the pore dilation that underlies channel opening involves only a subtle rearrangement of these three transmembrane helices. Such a limited conformational change seems optimal to allow rapid closed-open interconversion rates, and hence a fast postsynaptic response upon neurotransmitter binding. Thus, this receptor-channel seems to have evolved to take full advantage of the steep dependence of ion- and water-conduction rates on pore diameter that is characteristic of model hydrophobic nanopores.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nsmb.1407DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2596065PMC
April 2008

Desensitization contributes to the synaptic response of gain-of-function mutants of the muscle nicotinic receptor.

J Gen Physiol 2006 Nov;128(5):615-27

Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

Although the muscle nicotinic receptor (AChR) desensitizes almost completely in the steady presence of high concentrations of acetylcholine (ACh), it is well established that AChRs do not accumulate in desensitized states under normal physiological conditions of neurotransmitter release and clearance. Quantitative considerations in the framework of plausible kinetic schemes, however, lead us to predict that mutations that speed up channel opening, slow down channel closure, and/or slow down the dissociation of neurotransmitter (i.e., gain-of-function mutations) increase the extent to which AChRs desensitize upon ACh removal. In this paper, we confirm this prediction by applying high-frequency trains of brief ( approximately 1 ms) ACh pulses to outside-out membrane patches expressing either lab-engineered or naturally occurring (disease-causing) gain-of-function mutants. Entry into desensitization was evident in our experiments as a frequency-dependent depression in the peak value of succesive macroscopic current responses, in a manner that is remarkably consistent with the theoretical expectation. We conclude that the comparatively small depression of the macroscopic currents observed upon repetitive stimulation of the wild-type AChR is due, not to desensitization being exceedingly slow but, rather, to the particular balance between gating, entry into desensitization, and ACh dissociation rate constants. Disruption of this fine balance by, for example, mutations can lead to enhanced desensitization even if the kinetics of entry into, and recovery from, desensitization themselves are not affected. It follows that accounting for the (usually overlooked) desensitization phenomenon is essential for the correct interpretation of mutagenesis-driven structure-function relationships and for the understanding of pathological synaptic transmission at the vertebrate neuromuscular junction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1085/jgp.200609570DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151585PMC
November 2006

Estimating binding affinities of the nicotinic receptor for low-efficacy ligands using mixtures of agonists and two-dimensional concentration-response relationships.

J Gen Physiol 2006 Jun;127(6):719-35

Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.

The phenomenon of ligand-induced ion channel gating hinges upon the ability of a receptor channel to bind ligand molecules with conformation-specific affinities. However, our understanding of this fundamental phenomenon is notably limited, not only because the changes in binding site structure and ligand conformation that occur upon gating are largely unknown but, also, because the strength of these ligand-receptor interactions are experimentally elusive. Both high- and low-efficacy ligands pose a number of analytical and experimental challenges that can render the estimation of their conformation-specific binding affinities impossible. In this paper, we present a novel assay that overcomes some of the hurdles presented by weak agonists of the muscle nicotinic receptor and allows the estimation of their closed-state affinities. The method, which we have termed the "activation-competition" assay, consists of a single-channel concentration-response assay performed in the presence of a binary mixture of ligands of widely different efficacies. By plotting the channel response (i.e., the open probability) as a function of the concentration of each agonist in the mixture, interpreting the observed response in the framework of a plausible kinetic scheme, and fitting the open probability surface with the corresponding function, the affinities of the closed receptor for the two agonists can be simultaneously extracted as free parameters. Here, we applied this methodology to estimate the closed-state affinity of the muscle nicotinic receptor for choline (a very weak agonist) using acetylcholine (ACh) as the partner in the mixture. We estimated the dissociation equilibrium constant of choline (K(D)) from the wild type's closed state to be 4.1 +/- 0.5 mM (and that of ACh to be 106 +/- 6 microM). We also discuss the use of accurate estimates of affinities for low-efficacy agonists as a tool to discriminate between binding and gating effects of mutations, and in the context of the rational design of therapeutic drugs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1085/jgp.200509438DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151536PMC
June 2006

Block of muscle nicotinic receptors by choline suggests that the activation and desensitization gates act as distinct molecular entities.

J Gen Physiol 2006 Jun;127(6):703-17

Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.

Ion channel block in muscle acetylcholine nicotinic receptors (AChRs) is an extensively reported phenomenon. Yet, the mechanisms underlying the interruption of ion flow or the interaction of the blocker with the channel's gates remain incompletely characterized. In this paper, we studied fast channel block by choline, a quaternary-ammonium cation that is also an endogenous weak agonist of this receptor, and a valuable tool in structure-function studies. Analysis of the single-channel current amplitude as a function of both choline concentration and voltage revealed that extracellular choline binds to the open-channel pore with millimolar apparent affinity (K(B) congruent with 12 mM in the presence of approximately 155 mM monovalent and 3.5 mM divalent, inorganic cations), and that it permeates the channel faster than acetylcholine. This, together with its relatively small size ( approximately 5.5 A along its longest axis), suggests that the pore-blocking choline binding site is the selectivity filter itself, and that current blockages simply reflect the longer-lived sojourns of choline at this site. Kinetic analysis of single-channel traces indicated that increasing occupancy of the pore-blocking site by choline (as judged from the reduction of the single-channel current amplitude) is accompanied by the lengthening of (apparent) open interval durations. Consideration of a number of possible mechanisms firmly suggests that this prolongation results from the local effect of choline interfering with the operation of the activation gate (closure of blocked receptors is slower than that of unblocked receptors by a factor of approximately 13), whereas closure of the desensitization gate remains unaffected. Thus, we suggest that these two gates act as distinct molecular entities. Also, the detailed understanding gained here on how choline distorts the observed open-time durations can be used to compensate for this artifact during activation assays. This correction is necessary if we are to understand how choline binds to and gates the AChR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1085/jgp.200509437DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151541PMC
June 2006

Probing ion-channel pores one proton at a time.

Nature 2005 Dec;438(7070):975-80

Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

Although membrane proteins often rely on ionizable residues for structure and function, their ionization states under physiological conditions largely elude experimental estimation. To gain insight into the effect of the local microenvironment on the proton affinity of ionizable residues, we have engineered individual lysines, histidines and arginines along the alpha-helical lining of the transmembrane pore of the nicotinic acetylcholine receptor. We can detect individual proton binding-unbinding reactions electrophysiologically at the level of a single proton on a single side chain as brief blocking-unblocking events of the passing cation current. Kinetic analysis of these fluctuations yields the position-dependent rates of proton transfer, from which the corresponding pK(a) values and shifts in pK(a) can be calculated. Here we present a self-consistent, residue-by-residue description of the microenvironment around the pore-lining transmembrane alpha-helices (M2) in the open-channel conformation, in terms of the excess free energy that is required to keep the engineered basic side chains protonated relative to bulk water. A comparison with closed-channel data leads us to propose that the rotation of M2, which is frequently invoked as a hallmark of the gating mechanism of Cys-loop receptors, is minimal, if any.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature04293DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1384014PMC
December 2005

Free-energy landscapes of ion-channel gating are malleable: changes in the number of bound ligands are accompanied by changes in the location of the transition state in acetylcholine-receptor channels.

Authors:
Claudio Grosman

Biochemistry 2003 Dec;42(50):14977-87

Department of Molecular and Integrative Physiology and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

Acetylcholine-receptor channels (AChRs) are allosteric membrane proteins that mediate synaptic transmission by alternatively opening and closing ("gating") a cation-selective transmembrane pore. Although ligand binding is not required for the channel to open, the binding of agonists (for example, acetylcholine) increases the closed right harpoon over left harpoon open equilibrium constant because the ion-impermeable --> ion-permeable transition of the ion pathway is accompanied by a low-affinity --> high-affinity change at the agonist-binding sites. The fact that the gating conformational change of muscle AChRs can be kinetically modeled as a two-state reaction has paved the way to the experimental characterization of the corresponding transition state, which represents a snapshot of the continuous sequence of molecular events separating the closed and open states. Previous studies of fully (di) liganded AChRs, combining single-channel kinetic measurements, site-directed mutagenesis, and data analysis in the framework of the linear free-energy relationships of physical organic chemistry, have suggested a transition-state structure that is consistent with channel opening being an asynchronous conformational change that starts at the extracellular agonist-binding sites and propagates toward the intracellular end of the pore. In this paper, I characterize the gating transition state of unliganded AChRs, and report a remarkable difference: unlike that of diliganded gating, the unliganded transition state is not a hybrid of the closed- and open-state structures but, rather, is almost indistinguishable from the open state itself. This displacement of the transition state along the reaction coordinate obscures the mechanism underlying the unliganded closed right harpoon over left harpoon open reaction but brings to light the malleable nature of free-energy landscapes of ion-channel gating.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0354334DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1463891PMC
December 2003

Structure of the transition state of gating in the acetylcholine receptor channel pore: a phi-value analysis.

Biochemistry 2002 Apr;41(17):5548-55

Center for Single-Molecule Biophysics and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA.

The gating mechanism of the acetylcholine receptor channel (AChR) was investigated by using rate equilibrium linear free energy relationships (LFERs) to probe the transition state between the closed and open conformations. The properties of the transition state of gating in the second transmembrane segment (M2) of the delta subunit, one of the five homologous pore-lining segments, was measured on a residue-by-residue basis. Series of point mutations were engineered at individual positions of this domain, and the corresponding constructs were characterized electrophysiologically, at the single-channel level. Fully liganded AChR opening and closing rate constants were estimated, and Phi-values (which are a measure of the extent of the conformational change realized at the transition state) were calculated for each reaction series as the slope of the Brønsted relationship (log rate constant versus log equilibrium constant). Our results indicate that, at the transition state of gating, the extracellular half of deltaM2 partly resembles the open state (Phi-values between 0.24 and 0.38) while the intracellular half completely resembles the closed state (Phi-values between -0.18 and 0.03), with a break point near the middle of the M2 segment. This suggests that during gating the two halves of deltaM2 move asynchronously, with the rearrangement of the extracellular portion preceding (following) that of the intracellular part of deltaM2 during opening (closing). This particular sequence of molecular events indicates that the gating conformational change, which starts at the extracellular acetylcholine-binding sites (when opening), does not propagate exclusively along the primary sequence of the protein. In addition, our data are consistent with the deltaM2 segment bending or swiveling around its central residues during gating. We also elaborate on unsettled aspects of the analysis such as the accuracy of two-point LFERs, the physical interpretation of fractional Phi-values, and the existence of single versus parallel transition states for the gating reaction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6442467PMC
http://dx.doi.org/10.1021/bi011864fDOI Listing
April 2002