Publications by authors named "Claudia Wrzos"

10 Publications

  • Page 1 of 1

Blood-brain barrier resealing in neuromyelitis optica occurs independently of astrocyte regeneration.

J Clin Invest 2021 Mar;131(5)

Institute of Neuropathology and.

Approximately 80% of neuromyelitis optica spectrum disorder (NMOSD) patients harbor serum anti-aquaporin-4 autoantibodies targeting astrocytes in the CNS. Crucial for NMOSD lesion initiation is disruption of the blood-brain barrier (BBB), which allows the entrance of Abs and serum complement into the CNS and which is a target for new NMOSD therapies. Astrocytes have important functions in BBB maintenance; however, the influence of their loss and the role of immune cell infiltration on BBB permeability in NMOSD have not yet been investigated. Using an experimental model of targeted NMOSD lesions in rats, we demonstrate that astrocyte destruction coincides with a transient disruption of the BBB and a selective loss of occludin from tight junctions. It is noteworthy that BBB integrity is reestablished before astrocytes repopulate. Rather than persistent astrocyte loss, polymorphonuclear leukocytes (PMNs) are the main mediators of BBB disruption, and their depletion preserves BBB integrity and prevents astrocyte loss. Inhibition of PMN chemoattraction, activation, and proteolytic function reduces lesion size. In summary, our data support a crucial role for PMNs in BBB disruption and NMOSD lesion development, rendering their recruitment and activation promising therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI141694DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919716PMC
March 2021

Microglia damage precedes major myelin breakdown in X-linked adrenoleukodystrophy and metachromatic leukodystrophy.

Glia 2019 06 11;67(6):1196-1209. Epub 2019 Feb 11.

Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.

X-linked adrenoleukodystrophy (X-ALD) and metachromatic leukodystrophy (MLD) are two relatively common examples of hereditary demyelinating diseases caused by a dysfunction of peroxisomal or lysosomal lipid degradation. In both conditions, accumulation of nondegraded lipids leads to the destruction of cerebral white matter. Because of their high lipid content, oligodendrocytes are considered key to the pathophysiology of these leukodystrophies. However, the response to allogeneic stem cell transplantation points to the relevance of cells related to the hematopoietic lineage. In the present study, we aimed to better characterize the pathogenetic role of microglia in the above-mentioned diseases. Applying recently established microglia markers to human autopsy cases of X-ALD and MLD we were able to delineate distinct lesion stages in evolving demyelinating lesions. The immune-phenotype of microglia was altered already early in lesion evolution, and microglia loss preceded full-blown myelin degeneration both in X-ALD and MLD. DNA fragmentation indicating phagocyte death was observed in areas showing microglia loss. The morphology and dynamics of phagocyte decay differed between the diseases and between lesion stages, hinting at distinct pathways of programmed cell death. In summary, the present study shows an early and severe damage to microglia in the pathogenesis of X-ALD and MLD. This hints at a central pathophysiologic role of these cells in the diseases and provides evidence for an ongoing transfer of toxic substrates primarily enriched in myelinating cells to microglia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.23598DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594046PMC
June 2019

BCAS1 expression defines a population of early myelinating oligodendrocytes in multiple sclerosis lesions.

Sci Transl Med 2017 Dec;9(419)

Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.

Investigations into brain function and disease depend on the precise classification of neural cell types. Cells of the oligodendrocyte lineage differ greatly in their morphology, but accurate identification has thus far only been possible for oligodendrocyte progenitor cells and mature oligodendrocytes in humans. We find that breast carcinoma amplified sequence 1 (BCAS1) expression identifies an oligodendroglial subpopulation in the mouse and human brain. These cells are newly formed, myelinating oligodendrocytes that segregate from oligodendrocyte progenitor cells and mature oligodendrocytes and mark regions of active myelin formation in development and in the adult. We find that BCAS1 oligodendrocytes are restricted to the fetal and early postnatal human white matter but remain in the cortical gray matter until old age. BCAS1 oligodendrocytes are reformed after experimental demyelination and found in a proportion of chronic white matter lesions of patients with multiple sclerosis (MS) even in a subset of patients with advanced disease. Our work identifies a means to map ongoing myelin formation in health and disease and presents a potential cellular target for remyelination therapies in MS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.aam7816DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116798PMC
December 2017

NMDAR encephalitis: passive transfer from man to mouse by a recombinant antibody.

Ann Clin Transl Neurol 2017 11 3;4(11):768-783. Epub 2017 Oct 3.

Department of Neurology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany.

Objective: Autoimmune encephalitis is most frequently associated with anti-NMDAR autoantibodies. Their pathogenic relevance has been suggested by passive transfer of patients' cerebrospinal fluid (CSF) in mice in vivo. We aimed to analyze the intrathecal plasma cell repertoire, identify autoantibody-producing clones, and characterize their antibody signatures in recombinant form.

Methods: Patients with recent onset typical anti-NMDAR encephalitis were subjected to flow cytometry analysis of the peripheral and intrathecal immune response before, during, and after immunotherapy. Recombinant human monoclonal antibodies (rhuMab) were cloned and expressed from matching immunoglobulin heavy- (IgH) and light-chain (IgL) amplicons of clonally expanded intrathecal plasma cells (cePc) and tested for their pathogenic relevance.

Results: Intrathecal accumulation of B and plasma cells corresponded to the clinical course. The presence of cePc with hypermutated antigen receptors indicated an antigen-driven intrathecal immune response. Consistently, a single recombinant human GluN1-specific monoclonal antibody, rebuilt from intrathecal cePc, was sufficient to reproduce NMDAR epitope specificity in vitro. After intraventricular infusion in mice, it accumulated in the hippocampus, decreased synaptic NMDAR density, and caused severe reversible memory impairment, a key pathogenic feature of the human disease, in vivo.

Interpretation: A CNS-specific humoral immune response is present in anti-NMDAR encephalitis specifically targeting the GluN1 subunit of the NMDAR. Using reverse genetics, we recovered the typical intrathecal antibody signature in recombinant form, and proved its pathogenic relevance by passive transfer of disease symptoms from man to mouse, providing the critical link between intrathecal immune response and the pathogenesis of anti-NMDAR encephalitis as a humorally mediated autoimmune disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/acn3.444DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5682115PMC
November 2017

Acutely damaged axons are remyelinated in multiple sclerosis and experimental models of demyelination.

Glia 2017 08 31;65(8):1350-1360. Epub 2017 May 31.

Institute of Neuropathology, University Medical Center, Robert-Koch-Straße 40, Göttingen, D-37075, Germany.

Remyelination is in the center of new therapies for the treatment of multiple sclerosis to resolve and improve disease symptoms and protect axons from further damage. Although remyelination is considered beneficial in the long term, it is not known, whether this is also the case early in lesion formation. Additionally, the precise timing of acute axonal damage and remyelination has not been assessed so far. To shed light onto the interrelation between axons and the myelin sheath during de- and remyelination, we employed cuprizone- and focal lysolecithin-induced demyelination and performed time course experiments assessing the evolution of early and late stage remyelination and axonal damage. We observed damaged axons with signs of remyelination after cuprizone diet cessation and lysolecithin injection. Similar observations were made in early multiple sclerosis lesions. To assess the correlation of remyelination and axonal damage in multiple sclerosis lesions, we took advantage of a cohort of patients with early and late stage remyelinated lesions and assessed the number of APP- and SMI32- positive damaged axons and the density of SMI31-positive and silver impregnated preserved axons. Early de- and remyelinating lesions did not differ with respect to axonal density and axonal damage, but we observed a lower axonal density in late stage demyelinated multiple sclerosis lesions than in remyelinated multiple sclerosis lesions. Our findings suggest that remyelination may not only be protective over a long period of time, but may play an important role in the immediate axonal recuperation after a demyelinating insult.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.23167DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5518437PMC
August 2017

Differential contribution of immune effector mechanisms to cortical demyelination in multiple sclerosis.

Acta Neuropathol 2017 07 6;134(1):15-34. Epub 2017 Apr 6.

Institute of Neuropathology, University Medical Center Göttingen, 37075, Göttingen, Germany.

Cortical demyelination is a widely recognized hallmark of multiple sclerosis (MS) and correlate of disease progression and cognitive decline. The pathomechanisms initiating and driving gray matter damage are only incompletely understood. Here, we determined the infiltrating leukocyte subpopulations in 26 cortical demyelinated lesions of biopsied MS patients and assessed their contribution to cortical lesion formation in a newly developed mouse model. We find that conformation-specific anti-myelin antibodies contribute to cortical demyelination even in the absence of the classical complement pathway. T cells and natural killer cells are relevant for intracortical type 2 but dispensable for subpial type 3 lesions, whereas CCR2 monocytes are required for both. Depleting CCR2 monocytes in marmoset monkeys with experimental autoimmune encephalomyelitis using a novel humanized CCR2 targeting antibody translates into significantly less cortical demyelination and disease severity. We conclude that biologics depleting CCR2 monocytes might be attractive candidates for preventing cortical lesion formation and ameliorating disease progression in MS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00401-017-1706-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5486638PMC
July 2017

Loss of Myelin Basic Protein Function Triggers Myelin Breakdown in Models of Demyelinating Diseases.

Cell Rep 2016 07 23;16(2):314-322. Epub 2016 Jun 23.

Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Institute of Neuronal Cell Biology, Technical University Munich, 80805 Munich, Germany; German Center for Neurodegenerative Disease (DZNE), 6250 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany. Electronic address:

Breakdown of myelin sheaths is a pathological hallmark of several autoimmune diseases of the nervous system. We employed autoantibody-mediated animal models of demyelinating diseases, including a rat model of neuromyelitis optica (NMO), to target myelin and found that myelin lamellae are broken down into vesicular structures at the innermost region of the myelin sheath. We demonstrated that myelin basic proteins (MBP), which form a polymer in between the myelin membrane layers, are targeted in these models. Elevation of intracellular Ca(2+) levels resulted in MBP network disassembly and myelin vesiculation. We propose that the aberrant phase transition of MBP molecules from their cohesive to soluble and non-adhesive state is a mechanism triggering myelin breakdown in NMO and possibly in other demyelinating diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2016.06.008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4949381PMC
July 2016

CD14 is a key organizer of microglial responses to CNS infection and injury.

Glia 2016 Apr 18;64(4):635-49. Epub 2015 Dec 18.

Institute of Neuropathology, University of Göttingen, Göttingen, 37075, Germany.

Microglia, innate immune cells of the CNS, sense infection and damage through overlapping receptor sets. Toll-like receptor (TLR) 4 recognizes bacterial lipopolysaccharide (LPS) and multiple injury-associated factors. We show that its co-receptor CD14 serves three non-redundant functions in microglia. First, it confers an up to 100-fold higher LPS sensitivity compared to peripheral macrophages to enable efficient proinflammatory cytokine induction. Second, CD14 prevents excessive responses to massive LPS challenges via an interferon β-mediated feedback. Third, CD14 is mandatory for microglial reactions to tissue damage-associated signals. In mice, these functions are essential for balanced CNS responses to bacterial infection, traumatic and ischemic injuries, since CD14 deficiency causes either hypo- or hyperinflammation, insufficient or exaggerated immune cell recruitment or worsened stroke outcomes. While CD14 orchestrates functions of TLR4 and related immune receptors, it is itself regulated by TLR and non-TLR systems to thereby fine-tune microglial damage-sensing capacity upon infectious and non-infectious CNS challenges.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.22955DOI Listing
April 2016

Early loss of oligodendrocytes in human and experimental neuromyelitis optica lesions.

Acta Neuropathol 2014 Apr 30;127(4):523-38. Epub 2013 Nov 30.

Institute of Neuropathology, University Medical Centre Göttingen, Robert-Koch-Str. 40, 37099, Göttingen, Germany.

Neuromyelitis optica (NMO) is a chronic, mostly relapsing inflammatory demyelinating disease of the CNS characterized by serum anti-aquaporin 4 (AQP4) antibodies in the majority of patients. Anti-AQP4 antibodies derived from NMO patients target and deplete astrocytes in experimental models when co-injected with complement. However, the time course and mechanisms of oligodendrocyte loss and demyelination and the fate of oligodendrocyte precursor cells (OPC) have not been examined in detail. Also, no studies regarding astrocyte repopulation of experimental NMO lesions have been reported. We utilized two rat models using either systemic transfer or focal intracerebral injection of recombinant human anti-AQP4 antibodies to generate NMO-like lesions. Time-course experiments were performed to examine oligodendroglial and astroglial damage and repair. In addition, oligodendrocyte pathology was studied in early human NMO lesions. Apart from early complement-mediated astrocyte destruction, we observed a prominent, very early loss of oligodendrocytes and oligodendrocyte precursor cells (OPCs) as well as a delayed loss of myelin. Astrocyte repopulation of focal NMO lesions was already substantial after 1 week. Olig2-positive OPCs reappeared before NogoA-positive, mature oligodendrocytes. Thus, using two experimental models that closely mimic the human disease, our study demonstrates that oligodendrocyte and OPC loss is an extremely early feature in the formation of human and experimental NMO lesions and leads to subsequent, delayed demyelination, highlighting an important difference in the pathogenesis of MS and NMO.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00401-013-1220-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4229038PMC
April 2014

Assessment of lesion pathology in a new animal model of MS by multiparametric MRI and DTI.

Neuroimage 2012 Feb 2;59(3):2678-88. Epub 2011 Sep 2.

Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany.

Magnetic resonance imaging (MRI) is the gold standard for the detection of multiple sclerosis (MS) lesions. However, current MRI techniques provide little information about the structural features of a brain lesion with inflammatory cell infiltration, demyelination, gliosis, acute axonal damage and axonal loss. To identify methods for a differentiation of demyelination, inflammation, and axonal damage we developed a novel mouse model combining cuprizone-induced demyelination and experimental autoimmune encephalomyelitis. MS-like brain lesions were assessed by T1-weighted, T2-weighted, and magnetization transfer MRI as well as by diffusion tensor imaging (DTI). T2-weighted MRI differentiated control and diseased mice, while T1-weighted MRI better reflected the extent of inflammation and axonal damage. In DTI, axonal damage and cellular infiltration led to a reduction of the axial diffusivity, whereas primary demyelination after cuprizone treatment was reflected by changes in radial but not axial diffusivity. Importantly, alterations in radial diffusivity were less pronounced in mice with demyelination, inflammation, and acute axonal damage, indicating that radial diffusivity may underestimate demyelination in acute MS lesions. In conclusion, the combined information from different DTI parameters allows for a more precise identification of solely demyelinated lesions versus demyelinated and acutely inflamed lesions. These findings are of relevance for offering individualized, stage-adapted therapies for MS patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2011.08.051DOI Listing
February 2012